• Title/Summary/Keyword: 차량 안전

Search Result 2,291, Processing Time 0.03 seconds

A study on the Application of Living Lab in Transportation : Focused on the Auto-Image Sensing Signal System for Pedestrian (교통분야의 리빙랩 적용사례 연구 : 보행자 자동감지 횡단보도 시스템을 중심으로)

  • Jeon, Nayeoung;Kim, Sujae;Choo, Sangho;Lee, Hyangsook
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.2
    • /
    • pp.1-17
    • /
    • 2018
  • The living lab is a user-participatory innovation space where users can solve problems by themselves. Living Lab members are able to participate in all aspects of product development from technology conception. In this study, to prevent pedestrian accidents, auto-image sensing signal system was developed in Jeonju City, using the Living Lab method. In addition, we measured effectiveness of the auto-image sensing signal system with respect to pedestrian waiting time, pedestrian and driver signal violation, and pedestrian jaywalking. It was also compared the measures before installation, after installation and after applying Living Lab method. As a result, all of the three measures of effectiveness appeared to be more effective after Living Lab than after installation. Overall, this study is very significant in that it is the first case where the living lab is applied in transportation.

Comparison of Behaviors for Underground Flexible Pipes with Installation Gap (관로 이격거리에 따른 지중매설관의 거동특성 비교)

  • 이대수;상현규;김경열;홍성연
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.5
    • /
    • pp.79-87
    • /
    • 2003
  • Underground flexible pipes for electric cables are subject to external loads and surrounding soil pressure. Particularly, strain of flexible pipes is of great concern in terms of safety and maintenance of electric cables. In this paper, stress and strain of flexible pipes with two types of installation gap, ie, l0cm and naught, were compared to investigate the structural integrity of pipes from actual field test. The effect of degree of compaction and burial depth were also investigated to simulate the variety of construction situation. The results of the field test show that the strain criteria were satisfied under the burial depths of 80cm, 100cm and 120cm regardless of installation gap.

A Driving Information Centric Information Processing Technology Development Based on Image Processing (영상처리 기반의 운전자 중심 정보처리 기술 개발)

  • Yang, Seung-Hoon;Hong, Gwang-Soo;Kim, Byung-Gyu
    • Convergence Security Journal
    • /
    • v.12 no.6
    • /
    • pp.31-37
    • /
    • 2012
  • Today, the core technology of an automobile is becoming to IT-based convergence system technology. To cope with many kinds of situations and provide the convenience for drivers, various IT technologies are being integrated into automobile system. In this paper, we propose an convergence system, which is called Augmented Driving System (ADS), to provide high safety and convenience of drivers based on image information processing. From imaging sensor, the image data is acquisited and processed to give distance from the front car, lane, and traffic sign panel by the proposed methods. Also, a converged interface technology with camera for gesture recognition and microphone for speech recognition is provided. Based on this kind of system technology, car accident will be decreased although drivers could not recognize the dangerous situations, since the system can recognize situation or user context to give attention to the front view. Through the experiments, the proposed methods achieved over 90% of recognition in terms of traffic sign detection, lane detection, and distance measure from the front car.

A Study on the Equivalent Fatigue Damage of the Steel Railway Bridge (강철도교(鋼鐵道橋)의 등가피로피해(等價疲勞被害)에 관한 연구(硏究))

  • Chang, Dong Il;Lee, Jong Deuk;Chung, Yeong Wha
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.11-21
    • /
    • 1982
  • The dynamic strain-time(${\varepsilon}$-t) curves of the fatal members in three existing steel railway bridges was measured during the selected trains was passing, and was regulated statistically. By the results of these the equivalent fatigue damages of the selected members was calculated in comparison with the allowable stresses, and was examined. From these the base available in evaluating the stability and the lifeproof of the steel railway bridge was obtained. In addition to this, the following several properties which could be used availably in designing the steel railway bridges. It was conformed that the fatigue damages was different each other even in the same members, if the unit weight of the trains was same but the weights and the dispositions of the wheels of the trains was different each other. It was indicated that the fatigue damages was larger in the members which had the defects in components of the materials, the flaws being made during producing and constructing, and the corrosions, etc. It was considered that more a vailable data could be obtained, if the same studies were continued under the spans and the types of the bridges being changed continuously.

  • PDF

Designing FMH Impact-Absorbing Structure by Using Subcomponent Collapse Simulation (단품 압궤 시뮬레이션을 이용한 FMH 충격흡수부재의 설계방법에 관한 연구)

  • Kim, Ji-Hun;Jun, In-Ki;Choi, Jae-Min;Kim, Sung-Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.8
    • /
    • pp.1113-1118
    • /
    • 2010
  • It is requested that the interior compartment of a passenger vehicle must be satisfied with the FMVSS201U regulation, FMH impact test. It is needed the design methodology to find the appropriate structure about the FMH impact. When designing the impact-absorbing structure for the FMH impact test, it is to be noted that the impact absorber must have different performance considering the stiffness of the vehicle as the impact position and approach angle of FMH. In this study, an efficient design methodology was developed by using subcomponent collapse simulation instead of conducting full-vehicle simulation, thereby reducing the time and resources spent. Further, this unit-model simulation helps optimize the impact absorbing structure.

Impact Force Applied on the Spent Nuclear Fuel Disposal Canister that Accidentally Drops and Collides onto the Ground (사고로 지면에 추락낙하 충돌하는 고준위폐기물 처분용기에 발생하는 충격력)

  • Kwon, Young Joo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.5
    • /
    • pp.469-481
    • /
    • 2016
  • In this paper, a mathematical methodology was theoretically studied to obtain the impact force caused by the collision between rigid bodies. This theoretical methodology was applied to compute the impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground. From this study, the impact force required to ensure a structurally safe canister design was theoretically formulated. The main content of the theoretical study concerns the rigid body kinematics and equation of motion during collision between two rigid bodies. On the basis of this study, a general impact theory to compute the impact force caused by the collision between two bodies was developed. This general impact theory was applied to theoretically formulate the approximate mathematical solution of the impact force that affects the spent nuclear fuel disposal canister that accidentally falls to the ground. Simultaneously, a numerical analysis was performed using the computer code to compute the numerical solution of the impact force, and the numerical result was compared with the approximate mathematical solution.

Improving Two-way Road Functionality by Using Shoulder (길어깨를 활용한 2차로 도로 기능개선 방안 연구)

  • Choi, Keechoo;Shim, Sangwoo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.4
    • /
    • pp.1551-1558
    • /
    • 2013
  • The purpose of this study is deriving proper plan which is improving functionality of three-way intersection in two-way road by using shoulder. Alternatives of this study were considered as installation of yield lane and application of TWLTLs (Two-Way Left-Turn Lanes). Case studies to utilize alternatives were limited to national and local roadways which is wider than 11 meters due to be required 3 lanes. Under various traffic conditions such as traffic volume of each direction and left-turn, alternatives were analyzed by simulation. As a results, application of TWLTLs was better than installation of yield lane in terms of improving rate (8.0% vs. 3.7%). Application of TWLTLs is supposed to better alternative, however enough driver education is required to improving safety because it is different with existing driving pattern and/or behaviors. Some limitations and future research agenda have also been discussed by on-site inspections.

A study on the effective fire and smoke control in transverse oversized exhaust ventilation (횡류식 선택대배기환기에서의 배연특성에 관한 연구)

  • Han, Sang-Pil;Jeon, Yong-Han
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.13 no.6
    • /
    • pp.451-462
    • /
    • 2011
  • The smoke control system plays the most important role in securing evacuation environment when a fire occurs in road tunnels. Smoke control methods in road tunnels are classified into two categories which are longitudinal ventilation system and transverse ventilation system. In this study it is intended to review the characteristics of smoke behavior by performing numerical analysis for calculating the optimal smoke exhaust air volume with scaled-model and simulation when a fire occurs in tunnels in which transverse ventilation is applied, and for obtaining the basic data required for the design of smoke exhaust systems by deriving optimal smoke exhaust operational conditions for various conditions. As a result of this study, when the critical velocity in the tunnel is 1.75 m/s and 2.5 m/s, the optimal smoke exhaust air volume has to be more than $173m^3/s$, $236m^3/s$ for the distance of the smoke moving which can limit the distance to 250 m. In addition, in case of uniform exhaust the generated smoke is effectively taken away if the two exhaust holes near the fire region are opened at the same time.

An Efficient Pedestrian Recognition Method based on PCA Reconstruction and HOG Feature Descriptor (PCA 복원과 HOG 특징 기술자 기반의 효율적인 보행자 인식 방법)

  • Kim, Cheol-Mun;Baek, Yeul-Min;Kim, Whoi-Yul
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.10
    • /
    • pp.162-170
    • /
    • 2013
  • In recent years, the interests and needs of the Pedestrian Protection System (PPS), which is mounted on the vehicle for the purpose of traffic safety improvement is increasing. In this paper, we propose a pedestrian candidate window extraction and unit cell histogram based HOG descriptor calculation methods. At pedestrian detection candidate windows extraction stage, the bright ratio of pedestrian and its circumference region, vertical edge projection, edge factor, and PCA reconstruction image are used. Dalal's HOG requires pixel based histogram calculation by Gaussian weights and trilinear interpolation on overlapping blocks, But our method performs Gaussian down-weight and computes histogram on a per-cell basis, and then the histogram is combined with the adjacent cell, so our method can be calculated faster than Dalal's method. Our PCA reconstruction error based pedestrian detection candidate window extraction method efficiently classifies background based on the difference between pedestrian's head and shoulder area. The proposed method improves detection speed compared to the conventional HOG just using image without any prior information from camera calibration or depth map obtained from stereo cameras.

Modeling of the driving pattern for energy saving of the railway vehicles (철도차량의 주행에너지 절약을 위한 열차 주행 패턴 모델링)

  • Kim, Jung-Hyun;Kim, Sang-Hoon;Shin, Han-Chul;Lee, Se-Hoon
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2011.01a
    • /
    • pp.107-108
    • /
    • 2011
  • Since the development of railway technology, the current urban Railway the first train line in the country for safe operation control automatic/unattended operation, automatic train operation equipment available (ATO) on time and reliable operation has introduced. ATO Automatic operation controlled by the value (Target velocity) and the feedback value (Actual velocity) by the error between the backing and braking of the train by repeated low energy efficiency. In this paper, given a fixed distance stations between time operation with minimal energy in the driving characteristics and driving trains are modeled. Therefore, in line 5 real route time sectional drive straight sections for experimental data analysis / draft Section / curved and section of the train on that line is selected according to the changing driving patterns to minimize the energy optimal driving patterns were presented.

  • PDF