• Title/Summary/Keyword: 차량센서

Search Result 940, Processing Time 0.023 seconds

Prediction of Centerlane Violation for vehicle in opposite direction using Fuzzy Logic and Interacting Multiple Model (퍼지 논리와 Interacting Multiple Model (IMM)을 통한 잡음환경에서의 맞은편 차량의 중앙선 침범 예측)

  • Kim, Beomseong;Choi, Baehoon;An, Jhonghyen;Lee, Heejin;Kim, Euntai
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.5
    • /
    • pp.444-450
    • /
    • 2013
  • For intelligent vehicle technology, it is very important to recognize the states of around vehicles and assess the collision risk for safety driving of the vehicle. Specifically, it is very fatal the collision with the vehicle coming from opposite direction. In this paper, a centerlane violation prediction method is proposed. Only radar signal based prediction makes lots of false alarm cause of measurement noise and the false alarm can make more danger situation than the non-prediction situation. We proposed the novel prediction method using IMM algorithm and fuzzy logic to increase accuracy and get rid of false positive. Fuzzy logic adjusts the radar signal and the IMM algorithm appropriately. It is verified by the computer simulation that shows stable prediction result and fewer number of false alarm.

A Methodology for Estimating Section Travel Times Using Individual Vehicle Features (개별차량의 고유특성을 이용한 구간통행시간 산출기법 개발)

  • O, Cheol
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.83-92
    • /
    • 2005
  • This study if the first trial toward realizing a new methodology for vehicle re-identification based on heterogeneous sensor systems. A major interest of the author is how to effectively utilize information obtained from different sensors to derive accurate and reliable section travel times. The 'blade' sensor that is a newly developed sensor for capturing vehicle wheel information and the existing square loop sensor are employed to extract the inputs of the proposed vehicle re-identification algorithm. The fundamental idea of the algorithm developed in this study, which is so called 'anonumous vehicle re-identification,' it to match vehicle features obtained from both sensors. The results of the algorithm evaluation reveal that the proposed methodology could be successfully implemented in the field. The proposed methodology would be an invaluable tool for operating agencies in support of traffic monitoring systems and traveler information systems.

Magnetic Position Sensing System for Autonomous Vehicle and Robot Guidance (자율주행차량과 로봇의 안내를 위한 자계위치인식시스템)

  • Jung, Young-Yoon;Kim, Geun-Mo;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.2
    • /
    • pp.214-219
    • /
    • 2007
  • In this paper, a new magnetic position sensing mettled for autonomous vehicle and robot guidance is presented. In autonomous vehicle and robot control, position sensing is an important task for the identification of their locations, such as the current position within a trajectory. The magnet based autonomous vehicle and robot was identified position via magnetic materials. In the magnetic sensing system, the Earth field is one of the largest disturbance. To removal of the Earth field, this paper proposes 1-dimensional magnetic field sensors array and develops precise petition sensing system using linear operating region of the magnetic field sensor. This proposal is verified a feasible magnetic position sensing system for autonomous vehicle and robot guidance by the experimental results.

A Study for Applying Thermoelectric Module in a Bogie Axle Bearing (철도차량 차축 베어링 발열부의 열전발전 적용에 대한 기초연구)

  • Choi, Kyungwho;Kim, Jaehoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.4
    • /
    • pp.255-262
    • /
    • 2016
  • There has been intense research on self-diagnosis systems in railway applications, since stability and reliability have become more and more significant issues. Wired sensors have been widely used in the railway vehicles, but because of the difficulty in their maintenance and accessibility, they ar not considered for self-diagnosis systems. To have a self-monitoring system, wireless data transmission and self-powered sensors are required. For this purpose, a thermoelectric energy harvesting module that can generate electricity from temperature gradient between the bogie axle box and ambient environment was introduced in this work. The temperature gradient was measured under actual operation conditions, and the behavior of the thermoelectric module with an external load resistance and booster circuits was studied. The proposed energy harvesting system can be applied for wireless sensor nodes in railroad vehicles with optimization of thermal management.

Implementation of Wireless Measurement System for Tire Deformation (타이어 변형량의 무선 계측 시스템 구현)

  • Park, Sang-Su;Kwak, Seong-Woo;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.671-678
    • /
    • 2020
  • In this paper, a wireless measurement system has been developed which can measure the deformation of a tire in real time by utilizing strain gauge sensors and Zigbee wireless communication. A strain gauge sensor is mounted inside the tire and then the strain on the tire is obtained using the DSP module. The acquired sensor values are transmitted into the vehicle by radio communication. The wireless receiver module installed inside the vehicle can monitor the deformation of the tire in real time. The deformation of the tire can be used for measuring the load applied to each tire or the speed of the tire. The load or speed applied to the tires are essential parameters for the stable control of autonomous vehicles.

A Study on Development of U-Manless Overload Regulation System (U-중차량 무인과적단속시스템 구축방안에 대한 연구)

  • Jo, Byung-Wan;Kim, Do-Keun;Choi, Hae-Yun;Park, Jung-Hun;Yoon, Suk-Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.3
    • /
    • pp.387-392
    • /
    • 2007
  • Overloaded Vehicles are one of biggest of hazard in durability decrease of roads and bridges. Thus, regulation was put in force about overloaded vehicles to reserve this problem. However, existing system had many problems. For these reasons, this paper presents solutions of U-intelligent overload vehicles regulation system based on manless and wireless for fixing of problems of existing system and construction of u-lTS. With this in mind, we studied about composition method of system, applications of USN, design of system controller, WCDMA/HSDPA and we verified performance of WIM Sensors in this paper.

Fuzzy Sensor Algorithm for Traffic Monitoring applied by the Analytic Hierachy Process (AHP기법을 활용한 교통량조사 퍼지센서 알고리즘)

  • Jin, Hyun-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.1030-1038
    • /
    • 2008
  • Traffic monitoring method is mainly loop detector and piezo sensor. But this method is only detecting the number of vehicle. Monitoring traffic volume is not checking the number of vehicle but checking the length of access road, width of road, number of passing people, passing vehicle, delayed vehicle. The traffic signal control cycle is not fixed by only passing vehicle number but all related traffic proposal. This paper proposed selecting common characteristic out of each unrelated traffic proposal through Analytic Hierachy Process and this characteristic is applied to compose fuzzy sensor algorithm which find out new traffic volume concept of confusion degree. The accumulated delayed vehicle time is shorter in new fuzzy sensor algorithm applied by AHP than other traffic method

Unmanned Driving of Robotic Vehicle Using Magnetic Maker (자계표식을 이용한 로봇형 차량의 무인주행)

  • Im, Dae-Yeong;Ryoo, Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.6
    • /
    • pp.775-780
    • /
    • 2008
  • In this paper, unmanned driving of robotic vehicle using magnetic marker is proposed. One of the most important component of autonomous vehicle is to detect the position of a magnetic marker on the road. In order to calculate the precise position of a magnet embedded on the road, the relation of magnetic field and a sensor is analyzed, and a new position sensing system using arrayed magnetic sensor is proposed. Also, the steering control system using a stepping motor is developed for driving by automatic mode as well as manual mode. For the verification of usability, the developed robotic vehicle is tested on magnetic road.

보행자 항법 및 차량 항법 기술

  • Jo, Seong-Yun
    • ICROS
    • /
    • v.19 no.1
    • /
    • pp.32-48
    • /
    • 2013
  • 최근 보행자와 차량의 항법 정보(위치, 속도, 자세, 방위각, 등)는 기존의 편의(convenience) 목적의 활용뿐 아니라 안전(safety) 보장을 위한 기반 정보로 활용되고 있으며 이에 대한 원천기술 및 활용기술의 연구개발이 활발하게 이루어지고 있다. 본 고에서는 인프라 기반 및 센서 기반의 다양한 보행자/차량용 항법 기술과 항법용 융합 필터 기술을 설명하고 연구사례를 살펴보고자 한다.

Sensorless Control of Inverter for Anti-Start Refrigerator Compressor for Commercial Vehicle (상용차를 위한 무시동 냉동기 압축기용 인버터의 센서리스 제어)

  • Han, Keun-Woo;Qiu, Xiao Dong;Jung, Young-Gook;Lim, Young-Cheol;Kim, Seong-Gon;Kim, Young-Chan
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.210-211
    • /
    • 2013
  • 냉동차량은 이동 또는 정차 중에도 냉동 부하에 일정 온도를 유지 시켜야한다. 종전의 상용차량에 냉동시스템은 차량의 엔진과 연계하여 압축기를 구동하거나 엔진과 연계된 발전기의 전력을 이용하여 일정 온도를 유지하였다. 이러한 방식은 제어가 쉽지 않고 효율이 낮은 단점을 가지고 있다. 본 논문에서는 이러한 단점을 개선하고자 냉동차량이 정차 중인 무시동 기관에서도 일정 온도를 유지 할 수 있도록 센서리스 제어방식이 적용된 3상 인버터를 제안하였다.

  • PDF