• 제목/요약/키워드: 차량번호인식 시스템

검색결과 151건 처리시간 0.024초

다항식 기반 RBFNNs를 이용한 차량 번호판 인식 (Recognition of Vehicle License Plate Using Polynomial-based RBFNNs)

  • 김선환;오성권;김진율
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.1361-1362
    • /
    • 2015
  • 차량의 수요가 증가함에 따르는 지능적인 통제시스템의 요구된다. 그리고 과학기술의 발달과 시스템의 자동화에 따라 사람뿐만 아니라 차량도 인식이 필요하게 되었다. 따라서 본 논문은 다항식 기반 RBFNNs를 이용하여 차량의 번호판 인식을 수행한다. 번호판 영역과 번호는 영상처리에서 영상 이진화와 영상 모폴로지 기법 등 전처리 과정을 거친 후 검출하고, 차량 번호를 인식하기 위해 0~9사이의 숫자를 클래스 별로 데이터의 차원을 축소시켜 다항식 기반 RBFNNs에 학습하고, 테스트 차량의 번호판에서 번호별로 분류하여 차량번호를 인식한다.

  • PDF

퍼지 신경망을 이용한 자동차 번호판 인식 시스템 (Recognition System of Car License Plate using Fuzzy Neural Networks)

  • 김재용;이동민;김영주;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2006년도 춘계종합학술대회
    • /
    • pp.352-357
    • /
    • 2006
  • 매년 도로와 주차공간의 확장보다 차량의 수가 빠르게 증가하여 그에 따라 불법 주차 관리의 어려움이 증가하고 있다. 이러한 문제점을 해결하기 위해 지능형 주차 관리 시스템이 필요하게 되었다. 본 논문에서는 획득된 차량 영상에서 수직 에지의 특징을 이용하여 번호판 영역과 개별 코드를 추출하고, 추출된 개별 코드를 퍼지 신경망 알고리즘을 제안하여 학습 및 인식한다. 본 논문에서는 차량 번호판 영역을 검출하기 위해 프리윗 마스크를 적용하여 수직 에지를 찾고, 차량 번호판의 정보를 이용하여 잡음을 제거한 후에 차량 번호판 영역을 추출한다. 추출된 차량 번호판 영역은 반복 이진화방법을 적용하여 이진화하고, 이진화된 차량 번호판 영역에 대해서 수직 분포도와 수평 분포도를 이용하여 번호판의 개별 코드를 추출한다 추출된 개별 코드는 제안된 퍼지 신경망 알고리즘을 적용하여 인식한다. 제안된 퍼지 신경망은 입력층과 중간층간의 학습 구조로는 FCM 알고리즘을 적용하고 중간층과 출력층간의 학습 구조는 Max_Min 신경망을 적용한다. 제안된 방법의 추출 및 인식 성능을 평가하기 위하여 실제 차량 영상 150장을 대상으로 실험한 결과, 기존의 차량 번호판 인식 방법보다 효율적이고 인식 성능이 개선된 것을 확인하였다.

  • PDF

신경망 영상인식을 이용한 인가/비인가 차량 인식 시스템 연구 (The study of Authorized / Unauthorized Vehicle Recognition System using Image Recognition with Neural Network)

  • 윤찬호
    • 한국전자통신학회논문지
    • /
    • 제15권2호
    • /
    • pp.299-306
    • /
    • 2020
  • 신경망을 이용한 영상인식은 여러 분야에 널리 사용되고 있다. 본 연구에서는 차량 번호 인식 및 특정 구역 입출 시 통제에 필요한 인가/비인가 차량 인식 시스템을 연구하였다. 이 시스템은 영상을 인식하는 기능을 갖추고 있어 차량 번호에 대한 모든 정보를 확인하고, 차량 번호판을 정확히 인식할 수 있는 기능을 추가하였다. 그 밖에 신경망을 이용하여 좀 더 빠르게 차량번호를 확인할 수 있도록 하였다.

형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 (A Car License Plate Recognition Using Morphological Characteristic, Difference Operator and ART2 Algorithm)

  • 강무진;김재군;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2008년도 추계종합학술대회 B
    • /
    • pp.431-435
    • /
    • 2008
  • 2006년 11월 이후 신 차량 번호판 등장 후, 신 차량 번호판과 구 차량 번호판이 혼합되어 있다. 이에 따라 속도위반, 신호위반 단속, 무인 주차관리 시스템, 범죄 및 도주 차량 검거, 고속도로 톨게이트에서 통행료 지불로 인한 교통 체증현상을 해소하기 위한 자동 요금 징수와 같은 다양한 경우에서 자동차 번호판의 특징에 맞는 인식 시스템이 요구되고 있다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 형태학적 특징 및 차 연산과 ART2 알고리즘을 이용한 차량 번호판 인식 방법을 제안한다. 무인 카메라에서 획득된 차량 번호판 영상에서 차 연산을 이용하여 에지를 추출한 후에 블록 이진화를 한다. 이진화 된 차량 영상에서 신 구 차량 번호판의 형태학적 특성을 8방향 윤곽선 추적 알고리즘에 적용하여 잡음 영역을 제거하고, 차량의 번호판 영역을 추출한다 추출된 번호판 영역에 대하여 평균 이진화와 최대 최소 이진화를 적용하여 번호판의 개별 영역에 대한 형태학적 특성을 고려하여 잡음을 제거하고, Labeling 알고리즘을 적용하여 개별 문자를 추출한 후에 결합한다. 이렇게 분류된 개별 문자 및 숫자 코드를 ART2 알고리즘에 적용하여 학습 및 인식을 한다. 제안된 차량 번호판 추출 및 인식 방법의 성능을 평가하기 위해 녹색 번호판과 흰색 번호판 이미지 각각 100장을 대상으로 실험한 결과, 제시 된 차량 번호판 추출 및 인식 방법이 실험을 통해서 효율적인 것을 확인하였다.

  • PDF

신, 구 차량 번호판 통합 인식에 관한 연구 (A Study on Recognition of Both of New & Old Types of Vehicle Plate)

  • 한건영;우영운;한수환
    • 한국정보통신학회논문지
    • /
    • 제13권10호
    • /
    • pp.1987-1996
    • /
    • 2009
  • 최근 들어 기존의 녹색 바탕의 차량 번호판에서, 흰색 바탕의 신 차량 번호판으로 교체되고 있다. 하지만, 아직 기존의 차량 번호판이 신 차량 번호판으로 전면 교체 되지 않아 두 번호판 모두 사용되고 있기 때문에 주차 관리 시스템, 속도위반, 신호 위반 등 무인 카메라를 이용한 시스템에서, 기존 차량 번호판과 신 차량 번호판 특징에 맞는 인식 시스템이 요구된다. 따라서 본 논문에서는 이러한 문제를 해결하기 위해 기존의 녹색 번호판과 흰색 번호판 모두를 추출하고 인식 할 수 있는 알고리즘에 관한 연구를 수행하였다. 다양한 환경 에서 획득한 차량 영상으로부터 번호판 영역을 추출하기 위하여 형태학적 특징을 이용하였고, 추출된 번호판 영역의 수평, 수직 히스토그램과 문자의 상대적 위치 정보를 이용하여, 문자를 분리하였다. 최종적으로, 분리된 문자를 인식하기 위해 주성분 분석법(PCA : Principal Component Analysis)과 선형 판별 분석법(LDA : Linear Discriminant Analysis)을 적용하여 인식 시스템을 구성하였다. 실험 결과, 불규칙한 조명 상태에서도 상대적으로 높은 추출률과 문자 인식률을 나타내었다.

합성곱 신경망 기반의 차량 번호판 인식 시스템 (Convolutional Neural Network based Vehicle License Plate Recognition System)

  • 임성훈;이재흥
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.749-752
    • /
    • 2018
  • 깊은 신경망 모델을 이용한 차량 번호판 검출과 번호판 문자 인식 시스템을 제안한다. 차량 번호판 인식 시스템은 세 가지 종류의 깊은 신경망 모델로 구성된다. 기존의 영상처리 기반의 차량 번호판 검출과 문자 인식을 전부 신경망으로 대체함으로써 영상의 밝기, 회전, 왜곡 등의 변형에 강인한 성능을 얻을 수 있다. 차량 번호판 검출률은 99.3%, 문자 영역 검출률은 99%, 문자 인식률을 98.5%를 얻었다.

컬러 정보와 퍼지 C-means 알고리즘을 이용한 주차관리시스템 개발 (Developments of Parking Control System Using Color Information and Fuzzy C-menas Algorithm)

  • 김광백;윤홍원;노영욱
    • 지능정보연구
    • /
    • 제8권1호
    • /
    • pp.87-101
    • /
    • 2002
  • 본 논문에서는 컬러 정보와 퍼지 c-means 알고리즘을 이용한 차량 번호판 인식 방법을 제안하고 차량 번호판 인식을 이용한 주차관리시스템 개발에 대해서 기술한다 컬러 정보와 퍼지 c-means알고리즘을 이용한 차량 번호판 인식 기술은 차량의 영상에서 번호판을 추출하는 부분과 추출한 번호판 영역에서 문자를 인식하는 부분으로 구성된다 본 논문에서는 최빈수 평활화를 이용하여 차량 영상에서 녹색 잡음을 제거하고 RGB컬러에서 녹색 정보와 횐색 정보를 이용하여 번호판 영역을 추출하였다. 추출된 번호판 영역의 코드들은 히스토그램 방법을 이용하여 추출하였고 FCM(Fuzzy c-means) 알고리즘을 이용하여 차량 번호판을 인식하였다. 80개의 실제 차량 영상을 대상으로 실험한 결과는 제안된 번호판 영역 추출 방법이 기존의 RGB정보를 이용한 방법과 HSI를 이용한 방법보다 추출율이 개선되었다 그리고 FCM 알고리즘을 이용한 차량 번호판 인식이 효율적인 것을 확인하였다. 실험을 통하여 성능 향상을 보인 제안된 차량 번호판 방법을 이용하여 주차관리시스템을 개발하였다.

  • PDF

딥러닝을 이용한 번호판 검출과 인식 알고리즘 (License Plate Detection and Recognition Algorithm using Deep Learning)

  • 김정환;임준홍
    • 전기전자학회논문지
    • /
    • 제23권2호
    • /
    • pp.642-651
    • /
    • 2019
  • 최근 지능형 교통관제 시스템에 관한 다양한 연구가 진행되고 있는 가운데 번호판 검출과 인식 알고리즘은 가장 중요한 요소 중에 하나로 대두되고 있다. 번호판은 차량의 고유 식별값을 가지고 있기 때문이다. 기존의 차량 통행 관제 시스템은 정차를 기반으로 하고 있으며 차량의 입출입 인식 방법으로 루프 코일을 사용하고 있다. 이러한 방법은 교통 정체를 유발하고 유지보수 비용이 상승하는 단점을 가지고 있다. 본 논문에서는 이러한 문제점을 해결하기 위해서 차량의 입출입 인식 방법으로 카메라 영상을 사용한다. 차량 통행 관제 시스템의 특성상 카메라가 고정되어 있다. 이에 차량이 접근하면 카메라의 배경화면이 달라진다. 이 특징을 이용하여 배경화면의 차분영상을 구하면 차량의 입출입을 인식할 수 있다. 입출입 인식 후 한국 번호판의 형태학적 특성을 이용하여 후보 이미지를 추정한다. 그리고 선형 SVM(Support Vector Machine)을 이용해서 최종 번호판을 검출한다. 검출한 번호판의 글자와 숫자 인식 방법으로는 CNN(Convolutional Neural Network) 알고리즘을 사용한다. 제안한 알고리즘은 기존의 시스템과 달리 검출 위치를 기준으로 글자와 숫자를 인식하기 때문에 번호판의 규격이 변해도 인식할 수 있다. 실험한 결과 기존의 번호판 인식 알고리즘들 보다 제안한 알고리즘이 더 높은 인식률을 가진다.

에지기반 세그먼트 영상 생성에 의한 차량 번호판 인식 시스템 (Vehicle License Plate Recognition System By Edge-based Segment Image Generation)

  • 김진호;노덕수
    • 한국콘텐츠학회논문지
    • /
    • 제12권3호
    • /
    • pp.9-16
    • /
    • 2012
  • 스마트시티 프로젝트의 일환으로 실시간 차량 번호판 인식에 관한 연구들이 활발하게 진행되고 있다. 도로상에 설치된 CCTV에서 트리거 신호 없이 주행하는 차량 영상을 획득할 경우에는 번호판의 기하학적 왜곡이나 화질의 저하가 발생하여 번호판 인식이 어려워 질 수 있다. 본 논문에서는 트리거 신호를 이용하지 않은 상태에서 입력되어 기하학적 왜곡이나 화질의 저하가 발생된 차량 영상에도 강한 에지기반 문자 세그먼트 영상생성 기법의 차량 번호판 인식시스템을 제안하였다. 제안한 실시간 차량 번호판 인식 알고리즘을 도로상에 설치된 CCTV에 구현하고 일주일 동안 번호판 인식 실험을 수행해 본 결과 1일 평균 1,535 대의 통과 차량에 대해서 97.5%의 번호판 검출률을 얻을 수 있었으며 검출된 번호판에 기록된 문자들의 99.3%를 인식할 수 있었다.

메쉬와핑(Mesh Warping)을 이용한 차량번호판 추출 알고리즘개발 (Development of Algorithm for License Plate Recognition Extraction using Mesh Warping)

  • 최돈용;조형기;이승환
    • 대한교통학회:학술대회논문집
    • /
    • 대한교통학회 1998년도 제34회 추계 학술발표회
    • /
    • pp.150-150
    • /
    • 1998
  • 본 연구는 최근에 대두되는 첨단 교통체계(Intelligent Transportation Systems : ITS)중 첨단교통 관리체계(Advanced Traffic Management Systems : ATMS)에서 자동단속체계(Automatic Traffic Enforcement Systems : ATES)에 사용되는 자동차량번호판인식시스템의 핵심기술인 자동차량 번호판 추출에 관한 연구이다. 일반적으로 번호판익식시스템(License Plate Recogition System : LPRS)가 번호판을 인식하는데 있어서 번호판 추출과 문자인식, 크게 2개의 Process로 구분되어 수행된다. 본 연구에서는 도로상에 설치된 영상 카메라에서 얻은 차량의 영상을 바탕으로 차량의 번호판을 추출하는 새로운 영상처리기법을 제시하고 있다. 본 연구에서 제시한 영상처리기법은 메쉬와핑으로 차량번호판영역의 특징을 이용하여 추출해내는 방법이다. 메쉬란 직교하는 선들로 이루어진 그물 모양의 제어선을 말하는데 이 제어선은 가로와 세로로 한번씩 이미지를 왜곡하여 최종 이미지를 만들어낸다. 이 메쉬와핑기법은 정교하면서도 빠른 속도로 이미지를 처리할 수 있기 때문에 실시간 처리하는데 사용할 수 있다.

  • PDF