• Title/Summary/Keyword: 쪼갬인장간도

Search Result 64, Processing Time 0.02 seconds

Reliability Analysis and Fatigue Models of Concrete under Flexural or Split Tensional Cyclic Loadings (휨 또는 쪼갬인장 반복하중을 받는 콘크리트의 신뢰성 해석과 피로모델 제안)

  • Kim Dong-Ho;Sim Do-Sik;Kim Sung-Hwan;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.5 s.83
    • /
    • pp.581-589
    • /
    • 2004
  • This paper compares the fatigue behaviors of concretes subjected to flexural and split-tensional loadings, and proposes the fatigue reliability models based on experimental results and reliability analysis. The fatigue tests were performed for the specimens of $150 mm{\times}75 mm$ split tensional cylinders and $150 mm{\times}150 mm{\times}550 mm$ flexural beams under constant loadings at three levels (70, 80 and $90\%$) with 0.1 stress ratio, 20 Hz loading speed and sine wave. The reliability analysis on fatigue data was based on Weibull distribution of two-parameters. From fatigue test results, two criteria were proposed to reject the experimental fatigue data because of statistical variation of concrete fatigue data. Two parameters ($\alpha$and u) of Weibull distribution were obtained using graphical method, moment method and maximum likelihood method. The probability density function(P.D.F) and cumulative distribution function(C.D.F) of the Weibull distribution for fatigue life of pavement concrete were derived for various stress levels using parameters, $\alpha$ and u. The goodness-of-fit test by Kolmogorov-Smirnov test was acceptable at $5\%$ level of significance. Based on reliability analysis, a fatigue model for pavement concrete was proposed and compared from existing models.

Evaluation of Split Tension Fatigue Test Method for Application in Concrete (콘크리트의 쪼갬인장 피로실험방법 제안 및 적용성 평가)

  • Kim Dong-Ho;Lee Joo-Hyung;Jeong Won-Kyong;Yun Kyong-Ku
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.1 s.79
    • /
    • pp.27-35
    • /
    • 2004
  • Most of concrete fatigue tests currently used are flexural tension or compression methods to investigate the tensile or compressive properties, respectively. However, the concrete pavement or concrete slab is actually subjected to a combined stress condition such as biaxial or triaxial. The split tension test may result in similar stress condition to biaxial stress condition. The purposes of this study were to evaluate the split tension fatigue test method for application in concrete. These were done by a finite element analysis and experimental series. The results were as follows: The optimum configuration of split tension fatigue test was a cylinder of 15cm in diameter and 7.5cm in thickness, which had a little different thickness compared to the KS standard cylinder of ${\phi}15{\times}30cm$. The concrete stress ratio of compressive against horizontal from FEA was 3.1, while that from theory was 3.0. The stress distributions of mortar and steel were almost similar at different thicknesses. The measured static split tensile strengths of concrete and mortar were quite similar at 30cm and 7.5cm thickness cylinders. The measured stress-strain relationship showed their consistency at all specimens regardless of thickness, and confirmed the results from FEA. As a results, the concrete split tension specimen, cylinder of 15cm in diameter and 7.5cm in thickness, could be used at fatigue test because of its accuracy, simplicity and convenience.

A Comparative Study on the Tensile Strength of Frozen Soil according to Test Methods (시험 방법에 따른 동결토의 인장강도)

  • Seo, Young-Kyo;Kang, Hyo-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.4
    • /
    • pp.57-66
    • /
    • 2008
  • In this study, the blast-induced vibration effects on the structural stability of the adjacent tunnel and the stability were estimated with respect to the allowable peak particle velocity (PPV). The blasting distance from the tunnel satisfying the allowable PPV was estimated based on the analytical solutions, United States Bureau of Mines (USBM) suggestions, and the equations used in the subway in Seoul. The allowable blasting distance was estimated by using finite difference analysis (FDA) and the behavior of the concrete lining and rock bolts was examined and the stability of those was estimated during the blast. Research results show that the blast-induced vibration effects on the structural stability are negligible for the concrete lining but relatively large for the rock bolts.

Split Tension Fatigue Characteristics Analysis of Fatigue Tests Data for Concrete Pavements (콘크리트 포장 피로실험 데이터의 쪼갬인장 피로특성)

  • Kim, Dong-Ho;Kim, Sung-Hwan;Yun, Byung-Sung;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.23 no.A
    • /
    • pp.139-147
    • /
    • 2003
  • The purpose of this study was to investigate and analyze the fatigue test data of pavement concrete. The static strength tests were carried out to check the compressive strength, flexural strength, and split tension strength at 56 days in order to minimize strength variation effect during test. The specimens were fabricated at twelves sections at a construction site of highway. The stress level and stress ratio of fatigue test were determined from static test results. The results are as follow: The flexural strength at 28 days mostly satisfied the criterion for design, but the compressive strength at 28 days were slightly below the criterion even though it satisfied at 56 days. The fatigue limit was 2 million cycles if the specimen was not failed to that cycles. The S-N curves were developed from the fatigue test results at each stress levels and each stress ratio. Then, the fatigue life of pavement concrete at a given stress level and fatigue strength of pavement concrete could be derived from these curves. Analysis using method No.2 was more acceptable because resulting of comparison and analysis using method No.2 was presented 2 sections were presented $R^2$ < 0.7, and other 2 sections were presented 0.7 < $R^2$ < 0.8, and the others 8 sections were $R^2{\geq}0.8$.

  • PDF

Tensile Strength Characteristics of Cement Paste Mixed with Fibers (섬유가 혼합된 시멘트 페이스트의 인장강도 특성에 관한 연구)

  • Park, Sung-Sik;Hou, Yaolong
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.3
    • /
    • pp.5-16
    • /
    • 2015
  • The characteristics of tensile strength of fiber-reinforced grouting (cement paste) injected into rocks or soils were studied. A tensile strength of such materials utilized in civil engineering has been commonly tested by an indirect splitting tensile test (Brazilian test). In this study, a direct tensile testing method was developed with built-in cylinder inside a cylindrical specimen with 15 cm in diameter and 30 cm in height. The testing specimen was prepared with 0%, 0.5%, or 1% (by weight) of a PVA or steel fiber reinforced mortar. A specimen with 5 cm in diameter and 10 cm in height was also prepared and tested for the splitting tensile test. Each specimen was air cured for 7 days or 28 days before testing. The tensile strength of built-in cylinder test showed 96%-290% higher than that of splitting tensile test. The 3D finite element analyses on these tensile tests showed that the tensile strength from built-in cylinder test had was 3 times higher than that of splitting tensile test. It is similar to experimental result. As an amount of fiber increased from 0% to 1%, its tensile strength increased by 119%-190% or 23%-131% for 7 days or 28 days-cured specimens, respectively. As a curing period increased from 7 days to 28 days, its strength decreased. Most specimens reinforced with PVA fiber showed tensile strength 14%-38% higher than that of steel fiber reinforced specimens.

Study on the Direct Tensile Test for Cemented Soils Using a Built-In Cylinder (내장형 실린더를 이용한 시멘트 고결토의 인장시험 방법에 관한 연구)

  • Park, Sung-Sik;Lee, Jun-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.5
    • /
    • pp.1505-1516
    • /
    • 2014
  • In this study, a cylinder embedded within cemented soils was used to cause directly tensile failure of cemented soils. An existing dumbbell type direct tensile test and a split tensile test that is most general indirect tensile test were also carried out to verify the developed built-in cylinder tensile test. Testing specimens with two different sand/cement ratios (1:1 and 3:1) and two curing periods (7 and 28 days) were prepared and tested. Total 10 specimens were prepared for each case and their average value was evaluated. Unconfined compression tests were also carried out and the ratio of compressive strength and tensile strength was evaluated. The tensile strength determined by built-in cylinder tensile test was slightly higher than that by dumbbell type direct tensile test. The dumbbell type test has often failed in joint part of specimen and showed some difficulty to prepare a specimen. Among three tensile testing methods, the standard deviation of tensile strength by split tensile test was highest. It was shown that the split tensile test is applicable to concrete or rock with elastic failure but not for cemented soils having lower strength.

Tension Stiffening Effect of RC Tension Members Reinforced with Amorphous Steel Fibers (비정질 강섬유로 보강된 철근콘크리트 인장부재의 인장강화효과)

  • Park, Kyoung-Woo;Lee, Jun-Seok;Kim, Woo;Kim, Dae-Joong;Lee, Gi-Yeol
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.5
    • /
    • pp.581-589
    • /
    • 2014
  • This paper presents the tension stiffening behavior from experimental results of each 6 amorphous steel fibers and normal steel fibers reinforced direct tensile specimens with the main variables such as cover thickness to bar diameter ratio. A tension stiffening effect for steel fiber reinforced RC tension members improve on the increase in cover thickness, and also amorphous steel fiber is usually superior to normal steel fiber. The reinforcement of steel fibers controlled the splitting cracks and led to significant increase in the tension stiffening effect. In particular, if cover thickness is more than twice the bar diameter, the amorphous steel fiber reinforced specimen is controlled the splitting crack and increased the tension stiffening effect. And, the tension stiffening effect of amorphous steel fiber reinforced concrete tension members is different to current structural design code provision.

Tension Stiffening Effect Considering Cover Thickness in Reinforced Concrete Tension Members (피복두께를 고려한 철근콘크리트 인장부재의 인장증강효과)

  • Lee, Gi-Yeol;Kim, Min-Joong;Kim, Woo;Lee, Hwa-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.791-797
    • /
    • 2011
  • This paper presents the test results of 12 direct tensile specimens to investigate the effect of cover thickness on the tension stiffening behavior in axially loaded reinforced concrete tensile members. Six concrete cover thickness ratios are selected as a main experimental parameter. The results showed that, as cover thickness became thinner, more extensive split cracking along the reinforcement occurred and transverse crack spacing became smaller, making the effective tensile stiffness of thin specimens at the stabilized cracking stage to be much smaller than that of thick specimens. This observation is not implemented in the current design provisions, in which the significant reduction of tension stiffening effect can be achieved by applying thinner cover thickness. Based on the present results, a modified tension stiffening factor is proposed to account for the effect of the cover thickness.