본 논문의 목적은 모바일 서비스를 위해 GML 프로파일을 개발하는 것이다. 현재 모바일 서비스를 위하여 다양한 형태의 지도 표현과 공간정보 서비스가 개발되고 있다. 그러나, 각 모바일 서비스마다 표준화되지 않은 독자적인 방법을 통해 공간 데이터를 전송 및 처리하고 있어서 모바일 서비스간의 상호운용성을 확보하기 어려운 상황이다. 이를 해결하기 위하여 GML을 기반으로 모바일 서비스용 GML 프로파일을 개발한다. 모바일 서비스 환경을 위한 실용적인 GML 프로파일을 개발하기 위해서는 GML 명세와 모바일 서비스를 먼저 분석하여야 한다 GML의 구성요소와 모바일 서비스 및 DB분석을 기반으로 MATRIX분석을 수행하여 모바일 서비스를 위해 필요한 GML 구성요소의 부분집합을 정의한다. 이를 기반으로 모바일 서비스용 GML 프로파일을 개발한다.
Journal of the Korean Society for information Management
/
v.35
no.4
/
pp.7-36
/
2018
This study aimed to analyze the content of Records Data Management (RDM) training programs provided by 51 out of 121 university libraries in North America that implemented RDM services, and to provide implications from the results. For the content analysis, 317 titles of classroom training programs and 42 headings at the highest level from the tables of content of online tutorials were collected and coded based on 12 data literacy competencies identified from previous studies. Among classroom training programs, those regarding data processing and analysis competency were offered the most. The highest number of the libraries provided classroom training programs in relation to data management and organization competency. The third most classroom training programs dealt with data visualization and representation competency. However, each of the remaining 9 competencies was covered by only a few classroom training programs, and this implied that classroom training programs focused on the particular data literacy competencies. There were five university libraries that developed and provided their own online tutorials. The analysis of the headings showed that the competencies of data preservation, ethics and data citation, and data management and organization were mainly covered and the difference existed in the competencies stressed by the classroom training programs. For effective RDM training program, it is necessary to understand and support the education of data literacy competencies that researchers need to draw research results, in addition to competencies that university librarians traditionally have taught and emphasized. It is also needed to develop educational resources that support continuing education for the librarians involved in RDM services.
Journal of the Institute of Electronics and Information Engineers
/
v.54
no.2
/
pp.76-82
/
2017
Malware, including ransomware to quickly detect, in this study, to provide an analysis method of malicious code through the image analysis that has been learned in the deep learning of artificial intelligence. First, to analyze the 2,400 malware data, and learning in artificial neural network Convolutional neural network and to image data. Extracts subgraphs to convert the graph of abstracted image, summarizes the set represent malware. The experimentally analyzed the malware is not how similar. Using deep learning of artificial intelligence by classifying malware and It shows the possibility of accurate malware detection.
Kim, Eden;Jang, Hyemin;Shin, Sungho;Jeong, Sungho;Hwang, Euiseok
Resources Recycling
/
v.27
no.1
/
pp.84-91
/
2018
In this study, a novel soft information based most probable classification scheme is proposed for sorting recyclable metal alloys with laser induced breakdown spectroscopy (LIBS). Regression analysis with LIBS captured spectrums for estimating concentrations of common elements can be efficient for classifying unknown arbitrary metal alloys, even when that particular alloy is not included for training. Therefore, partial least square regression (PLSR) is employed in the proposed scheme, where spectrums of the certified reference materials (CRMs) are used for training. With the PLSR model, the concentrations of the test spectrum are estimated independently and are compared to those of CRMs for finding out the most probable class. Then, joint soft information can be obtained by assuming multi-variate normal (MVN) distribution, which enables to account the probability measure or a prior information and improves classification performance. For evaluating the proposed schemes, MVN soft information is evaluated based on PLSR of LIBS captured spectrums of 9 metal CRMs, and tested for classifying unknown metal alloys. Furthermore, the likelihood is evaluated with the radar chart to effectively visualize and search the most probable class among the candidates. By the leave-one-out cross validation tests, the proposed scheme is not only showing improved classification accuracies but also helpful for adaptive post-processing to correct the mis-classifications.
Kim, Sun Ok;Lee, Soo Yong;Lee, Seok Jun;Lee, Hee Choon;Ji, Seon Su
Journal of the Korean Data and Information Science Society
/
v.24
no.4
/
pp.803-813
/
2013
The purchase of items in e-commerce is a little bit different from that of items in off-line. The recommendation of items in off-line is conducted by salespersons' recommendation, However, the item recommendation in e-commerce cannot be recommended by salespersons, and so different types of methods can be recommended in e-commerce. Recommender system is a method which recommends items in e-commerce. Preferences of customers who want to purchase new items can be predicted by the preferences of customers purchasing existing items. In the recommender system, the items with estimated high preferences can be recommended to customers. The algorithm of collaborative filtering is used in recommender system of e-commerce, and the list of recommended items is made by estimated values, and then the list is recommended to customers. The dataset used in this research are 100k dataset and 1 million dataset in Movielens dataset. Similar results in two dataset are deducted for generalization. To suggest a new algorithm, distribution features of estimated values are analyzed by the existing algorithm and transformed algorithm. In addition, respondent'distribution features are analyzed respectively. To improve the collaborative filtering algorithm in neighborhood recommender system, a new algorithm method is suggested on the basis of existing algorithm and transformed algorithm.
In this paper, we present a deep neural network-based prediction model that processes and analyzes the corporate credit and personal credit information of individual business owners as a new method to predict the default rate of individual business more accurately. In modeling research in various fields, feature selection techniques have been actively studied as a method for improving performance, especially in predictive models including many features. In this paper, after statistical verification of macroeconomic indicators (macro variables) and credit information (micro variables), which are input variables used in the default rate prediction model, additionally, through the credit information feature selection method, the final feature set that improves prediction performance was identified. The proposed credit information feature selection method as an iterative & hybrid method that combines the filter-based and wrapper-based method builds submodels, constructs subsets by extracting important variables of the maximum performance submodels, and determines the final feature set through prediction performance analysis of the subset and the subset combined set.
Kim, Mi-Lyoung;Kim, Hyo-Seung;Son, Young-Dong;Lee, Dong-Hoon
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.4
/
pp.733-744
/
2012
Dynamic threshold public-key encryption provides dynamic setting of the group of all users, receivers and the threshold value. Over recent years, there are many studies on the construction of scheme, called ID-based dynamic threshold encryption, which combines the ID-based encryption with dynamic threshold encryption. In this paper, we analyze the ID-based dynamic threshold encryption proposed by Xing and Xu in 2011, and show that their scheme has a structural problem. We propose a conversion method from ID-based encryption which uses the bilinear map to ID-based dynamic threshold encryption. Additionally, we prove this converted scheme has CPA security under the full model.
Minjung Cha;So Young Park;Hyun-joo Song;Younhee Roh
Korean Journal of Culture and Social Issue
/
v.18
no.1
/
pp.27-51
/
2012
The current paper examines the effect of collectivism on perceived youth unemployment anxiety as well as mental health and the mediating effects of employment self-efficacy; self-esteem; and the frequency of upward and downward social comparisons. In Study 1, data were gathered from 179 university students in upper-ranking schools and middle-ranking schools in Seoul, Korea. Our results indicated that (a) collectivism was positively correlated to, and also an significant predictor of perceived youth unemployment anxiety and mental health and (b) employment self-efficacy and self-esteem had mediating effects on the relationship between collectivism and perceived youth unemployment anxiety and mental health. In Study 2, data were gathered from 118 students in upper-ranking schools in Seoul, Korea. Our results indicated that (c) upward social comparison had mediating effects on the relationship between collectivism and perceived youth unemployment anxiety and mental health, while downward social comparison did not. The findings are discussed in terms of their general implications for understanding the importance of culture in employment seeking settings.
Annual Conference on Human and Language Technology
/
2000.10d
/
pp.33-40
/
2000
복합명사의 한 구조는 구성 명사간의 수식관계의 집합이라고 본다. 한 복합명사에 대하여 가능한 여러 구조 중에서 올바른 구조를 알아 내는 것이 본 논문의 목표이다. 이를 위하여 우리는 최근에 유행하는 통계 기반 분석 기법을 이용한다. 먼저 우리의 복합 명사 분석 문제에 알맞은 통계 모델을 개발하였다. 이 모델을 이용하면 분석하려는 복합명사의 가능한 분석 구조마다 확률 값을 얻게 된다. 그 다음 가능한 구조들 중에서 가장 확률값이 큰 구조를 복합명사의 구조로 선택한다. 통계 기반 기법에서 항상 문제가 되는 것이 데이터 부족문제이다. 우리는 이를 해결하기 위해 개념적 계층구조의 하나인 워드넷(WordNet)을 이용한다.
Proceedings of the Korean Information Science Society Conference
/
2004.10b
/
pp.532-534
/
2004
본 논문은 분석가들에게 Naive Geography에 기반 한 형상 추출기술과 상식적 공간추론 기술을 제공하는 문제 해결 환경인 NG Analyst의 개발 사례에 대해 다뤘다. 지형과 각각의 객체에 대한 구성 정보는 분산된 지형공간의 지식을 사실적으로 묘사하는 추론집합에 의해 표현되며 사용자가 형상정보를 인지적으로 이해할 수 있도록 3차원으로 표현한다. 여러 그래픽 적인 요소들로 표현된 Naive Geography 정보들은 분석가들에게 실세계의 공간과 객체들을 유사하게 구성하여 제공함으로서 직관적으로 이해하고 상호작용 할 수 있는 문제 해결 환경을 제공한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.