Abstract
The purchase of items in e-commerce is a little bit different from that of items in off-line. The recommendation of items in off-line is conducted by salespersons' recommendation, However, the item recommendation in e-commerce cannot be recommended by salespersons, and so different types of methods can be recommended in e-commerce. Recommender system is a method which recommends items in e-commerce. Preferences of customers who want to purchase new items can be predicted by the preferences of customers purchasing existing items. In the recommender system, the items with estimated high preferences can be recommended to customers. The algorithm of collaborative filtering is used in recommender system of e-commerce, and the list of recommended items is made by estimated values, and then the list is recommended to customers. The dataset used in this research are 100k dataset and 1 million dataset in Movielens dataset. Similar results in two dataset are deducted for generalization. To suggest a new algorithm, distribution features of estimated values are analyzed by the existing algorithm and transformed algorithm. In addition, respondent'distribution features are analyzed respectively. To improve the collaborative filtering algorithm in neighborhood recommender system, a new algorithm method is suggested on the basis of existing algorithm and transformed algorithm.
전자상거래에서 상품의 구입은 오프라인에서 구매하는 방식과는 차이가 있다. 오프라인에서 상품추천은 판매원의 추천에 의해 이루어지지만 온라인에서 상품 추천은 판매원이 상품 추천을 할 수가 없기 때문에 오프라인과는 다른 형태의 상품을 추천하게 된다. 추천시스템은 온라인 상거래에서 상품을 추천하는 방법으로 기존 상품을 구입한 고객의 선호도를 기반으로 상품을 구입하려는 고객의 선호도를 예측하여 추정된 선호도가 높은 상품을 고객에게 추천하는 방법이다. 협력적 필터링 알고리즘은 전자상거래의 상품추천 추천시스템에 사용되며 추정된 값들로 추천 상품 목록을 만들고 그 목록을 고객에게 추천을 하는 것이다. 이 논문에서 사용된 데이터집합은 Movielens 데이터집합인 100k 데이터집합과 1 million 데이터집합이며 일반화를 위해 2개의 데이터집합에서 유사한 결과를 도출하여 일반화시키고자 한다. 영화 추천시스템의 새로운 알고리즘을 제안하기 위해 기존의 알고리즘과 변형된 알고리즘에 의해 추정된 추정값들의 분포 특징을 분석과 응답자별로 분류해서 응답자별 분포의 특징을 분석하였다. 이 논문에서는 이웃기반 추천시스템 협력적 필터링 알고리즘을 개선하기 위해 기존의 알고리즘과 변형된 알고리즘을 바탕으로 새로운 알고리즘을 제안하였다.