DOI QR코드

DOI QR Code

A study of development for movie recommendation system algorithm using filtering

필터링기법을 이용한 영화 추천시스템 알고리즘 개발에 관한 연구

  • Kim, Sun Ok (School of Information Communication & Broadcasting Engineering, Halla University) ;
  • Lee, Soo Yong (College of Humanities & Arts, Yonsei University) ;
  • Lee, Seok Jun (Department of MIS, Sangji University) ;
  • Lee, Hee Choon (Department of Computer Data & Information, Sangji University) ;
  • Ji, Seon Su (Department of Information Technology & Engineering, Gangneung-Wonju National University)
  • 김선옥 (한라대학교 정보통신방송공학부) ;
  • 이수용 (연세대학교 교양교직과) ;
  • 이석준 (상지대학교 경영정보학과) ;
  • 이희춘 (상지대학교 컴퓨터데이터정보학과) ;
  • 지선수 (강릉원주대학교 정보기술공학과)
  • Received : 2013.05.29
  • Accepted : 2013.07.07
  • Published : 2013.07.31

Abstract

The purchase of items in e-commerce is a little bit different from that of items in off-line. The recommendation of items in off-line is conducted by salespersons' recommendation, However, the item recommendation in e-commerce cannot be recommended by salespersons, and so different types of methods can be recommended in e-commerce. Recommender system is a method which recommends items in e-commerce. Preferences of customers who want to purchase new items can be predicted by the preferences of customers purchasing existing items. In the recommender system, the items with estimated high preferences can be recommended to customers. The algorithm of collaborative filtering is used in recommender system of e-commerce, and the list of recommended items is made by estimated values, and then the list is recommended to customers. The dataset used in this research are 100k dataset and 1 million dataset in Movielens dataset. Similar results in two dataset are deducted for generalization. To suggest a new algorithm, distribution features of estimated values are analyzed by the existing algorithm and transformed algorithm. In addition, respondent'distribution features are analyzed respectively. To improve the collaborative filtering algorithm in neighborhood recommender system, a new algorithm method is suggested on the basis of existing algorithm and transformed algorithm.

전자상거래에서 상품의 구입은 오프라인에서 구매하는 방식과는 차이가 있다. 오프라인에서 상품추천은 판매원의 추천에 의해 이루어지지만 온라인에서 상품 추천은 판매원이 상품 추천을 할 수가 없기 때문에 오프라인과는 다른 형태의 상품을 추천하게 된다. 추천시스템은 온라인 상거래에서 상품을 추천하는 방법으로 기존 상품을 구입한 고객의 선호도를 기반으로 상품을 구입하려는 고객의 선호도를 예측하여 추정된 선호도가 높은 상품을 고객에게 추천하는 방법이다. 협력적 필터링 알고리즘은 전자상거래의 상품추천 추천시스템에 사용되며 추정된 값들로 추천 상품 목록을 만들고 그 목록을 고객에게 추천을 하는 것이다. 이 논문에서 사용된 데이터집합은 Movielens 데이터집합인 100k 데이터집합과 1 million 데이터집합이며 일반화를 위해 2개의 데이터집합에서 유사한 결과를 도출하여 일반화시키고자 한다. 영화 추천시스템의 새로운 알고리즘을 제안하기 위해 기존의 알고리즘과 변형된 알고리즘에 의해 추정된 추정값들의 분포 특징을 분석과 응답자별로 분류해서 응답자별 분포의 특징을 분석하였다. 이 논문에서는 이웃기반 추천시스템 협력적 필터링 알고리즘을 개선하기 위해 기존의 알고리즘과 변형된 알고리즘을 바탕으로 새로운 알고리즘을 제안하였다.

Keywords

References

  1. Kim. J. H. and Byeon. H. S. (2011). A product recommendation system based on adjacency data. Journal of the Korean Data & Information Science Society, 22, 19-27.
  2. Kim. S. H., Oh. B. H., Kim. M. J. and Yang. J. H. (2012). A movie recommendation algorithm combining collaborative filtering and content information. Journal of Korean Institute of Information Scientists and Engineers: Software and Applications, 39, 261-268.
  3. Kim, S. O. (2010). The research of new algorithm to improve prediction accuracy of recommender system in electronic commerce. Journal of Korean Data & Information Science Society, 21, 185-194.
  4. Kim. S. O. and Lee H. C. (2010). A study of distribution of response and rank of recommendation in collaborative filtering. Journal of the Korean Data Analysis Society, 12, 2071-2080.
  5. Lee, H. C. and Lee. S. J. (2006). On the precision of the prediction of the nearest neighbor algorithm and adjusted algorithm for user-based recommender system. Journal of the Korean Data Analysis Society, 8, 1893-1904.
  6. Lee, S. H. and Park, S. H. (2011). Accuracy improvement of a collaborative filtering recommender system using attribute of age. Journal of the Korea Safety Management & Science, 13, 169-177.
  7. Lee. S. J., Kim. S. O. and Lee H. C. (2007a). The relationship of prediction accuracy and the run of abnormal users' ratings in collaborative filtering. Journal of the Korean Data Analysis Society, 9, 2043-2054.
  8. Lee, S. J., Kim, S. O. and Lee, H. C. (2007b). A study on the interrelationship between the prediction error and the rating's pattern in collaborative. Journal of Korean Data & Information Science, 18, 659-668.
  9. Linden, G., Smith, B. and York, J. (2003). Amazon.com recommendations: Item-to-item collaborative filtering. IEEE Internet Computing, 7, 76-80. https://doi.org/10.1109/MIC.2003.1167344
  10. Qinjiao, M., Boqin, F. and Shanliang, P. (2012). A study of top-n recommendation on user behavior data. 2012 IEEE International Conference on Computer Science and Automation Engineering, 2012 International Conference, 25-27 May, 582-586.
  11. Wu, Q., Li, L., Li, H., Tang, F., Barolli, L. amd Luo. Y. (2012). Recommendation of more interests based on collaborative filtering, 2012 IEEE 26th International Conference on Advanced Information Networking and Applications, 2012 International Conference, 26-29 March, 191-198.
  12. Yang, G. M., Lee, H. C. and Park, Y. S. (2008). The feature of preference prediction by memory-based collaborative filtering algorithm. Journal of the Korean Data Analysis Society, 10, 591-601.
  13. Yanxiang, L., Deke, G., Fei, C. and Honghui, C. (2013). User-based clustering with top-n recommendation on cold-start problem. 2013 Third International Conference on Intelligent System Design and Engineering Applications, 2013 International Conference, 16-18 Jan, 1585-1589.
  14. Yu, S. J. (2012). A comprehensive performance evaluation in collaborative filtering. Journal of the Korea Society of Computer and Information, 17, 83-90.

Cited by

  1. Classification of ratings in online reviews vol.27, pp.4, 2016, https://doi.org/10.7465/jkdi.2016.27.4.845