• 제목/요약/키워드: 상품추천

검색결과 412건 처리시간 0.027초

인터넷 쇼핑몰에서의 다양한 관점을 가지는 상품 추천 시스템의 구현 (The Implementation of Recommender System for Internet Shopping Mall Using Multiple View Points)

  • 천인국
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2001년도 춘계학술발표논문집 (하)
    • /
    • pp.1021-1024
    • /
    • 2001
  • 본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 정보 데이터베이스와 추천 엔진으로 이루어지며 사용자에게 질문을 던져서 사용자의 조건을 수집한 다음, 이를 상품 정보와 비교하여 가장 최적의 상품을 추천한다. 추천 시스템에서는 특정 상품이 사용자의 조건과 얼마나 일치하는지를 점수로 표시하고 이들 점수를 모든 상품에 대하여 계산한 다음, 가장 높은 점수를 얻은 상품을 추천하게 된다. 이 시스템의 장점은 조건에 정확히 부합하는 상품이 없는 경우에도 가장 조건과 많이 일치하는 상품을 추천할 수 있다는 것이다. 또한 하나의 관점이 아닌 서로 다른 관점을 가지고 있는 여러 전문가가 추천하는 것처럼 본 상품 추천 시스템도 3가지에서 최적의 상품을 추천한다. 하나의 예로 핸드폰을 추천하는 인터넷 사이트를 구축하고 테스트하였다.

  • PDF

인터넷 쇼핑몰을 위한 데이터마이닝 기반 개인별 상품추천방법론의 개발 (Development of a Personalized Recommendation Procedure Based on Data Mining Techniques for Internet Shopping Malls)

  • Kim, Jae-Kyeong;Ahn, Do-Hyun;Cho, Yoon-Ho
    • 지능정보연구
    • /
    • 제9권3호
    • /
    • pp.177-191
    • /
    • 2003
  • 상품추천시스템은 고객들에게 추천 상품 리스트를 만들어 고객들이 구매 가능성이 있는 상품을 쉽게 찾도록 도와주는 개인화 된 정보필터링 기술이다 협업 필터링(collaborative filtering)이 가장 성공적인 상품추천 기법으로 알려져 있으며 많이 이용되고 있다. 그러나, 인터넷 쇼핑몰에서 관리하는 상품과 고객의 수가 급속히 증가하면서 협업필터링에 기반 한 상품추천 시스템은 입력데이터의 희박성(Sparsity) 문제와 시스템 확장성(Scalability) 문제가 노출되고 있다. 따라서 본 연구에서는 협업필터링 기반 상품추천시스템의 상품추천 효과 및 성능을 개선하기 위해 웹 마이닝과 군집분석 기법에 기반을 둔 개인별 상품추천 방법론을 개발한다. 또한 실제 인터넷 쇼핑몰에서 개인별로 상품을 추천할 때 개발된 상품추천 방법론을 적용하여 다른 기존 상품추천 방법론과 실험적으로 비교함으로써 개발 방법론의 효과 및 성능을 검증한다.

  • PDF

협업 필터링 기반 개인화에서의 상품군 중립적 사용자 프로파일링 타당성 검토 (Feasibility Study on Cross-Product Category User Profiling in Collaborative Filtering Based Personalization)

  • 김종우;박수환;이홍주
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2005년도 추계학술대회 및 정기총회
    • /
    • pp.257-263
    • /
    • 2005
  • 초기에 하나의 상품 카테고리만을 다루던 전자상거래 사이트들이 브랜드 확립 후에 다른 상품 카테고리까지 확대해 나가는 모습을 많이 보아왔다. 고객이 아직 방문하지 않은 신규 상품 카테고리의 상품에 대하여 기존 상품 카테고리에서 만들어진 사용자 프로파일을 활용하여 개인화된 추천을 할 수 있다면, 고객이 다양한 상품 카테고리를 방문하도록 유도할 수 있을 것이다. 하지만 일반적으로 전자상거래 사이트에서는 상품 카테고리별로 사용자의 선호도를 파악하여 개인화된 추천을 수행하기 때문에, 해당 카테고리 내 상품의 구매나 방문 기록이 없다면 개인화된 추천을 수행하기가 어렵다 . 본 논문에서는 협업 필터링을 통해 신규 상품카테고리 내의 상품을 추천하기 어려운 고객들을 대상으로 기존의 사용자 선호도 데이터를 활용하여 신규 상품 카테고리 내의 상품을 추천하는 방안의 타당성을 살펴보도록 한다. 즉, 기존 사용자의 특정상품 카테고리 선호도 데이터를 통해 사용자간 유산도를 계산하고, 이를 추천하려는 타 상품 카테고리 내의 상품들에 대한 예측 선호도 계산에 활용 타당성을 살펴본다. 이를 실증적으로 검토하기 위해서, Yes24 사이트의 서적, 음반, DVD 3개의카테고리 내의 상품을 방문한 웹 패널 데이터를 이용하여 타당성 분석을 수행하였다. 분석 결과, 동일 상품 카테고리 내의 선호도 정보를 가지고 현업 필터링을 수행하는 것보다는 추천 성과가 낮았지만 활용할만한 추천 성과를 보였으며, 활용하는 상품 카테고리와 예측하는 상품 카테고리별로 추천성과가 상이했다.

  • PDF

베이지안 네트워크를 이용한 개인화 된 상품 추천 에이전트 (A Personalized Recommender Agent Using Bayesian Network)

  • 박진희;정환묵
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2006년도 추계학술대회 학술발표 논문집 제16권 제2호
    • /
    • pp.127-130
    • /
    • 2006
  • 소비자가 최적의 상품을 선택하기 위해서는 충분한 상품정보를 파악하여 상품정보를 일일이 조사해야하는 번거로움이 생긴다. 이러한 문제점을 해결하기 위하여 여러 가지 상품추천방법이 제안되고 있으나 상품추천 과정에서 고객의 기호 변화를 다루는 연구가 부족하다. 본 논문에서는 소비자의 기호 변화에 적응하는 개인화 된 상품 추천을 위하여 베이지안 네트워크를 모델링하여 상품 구매에 따르는 선호도를 분석하고, 추천된 상품에 대한 사용자의 행동으로 관심 정도를 측정하여 추천 리스트를 제공한다.

  • PDF

인터넷 쇼핑몰을 위한 하이브리드 상품 추천 시스템 (Hybrid Product Recommender System far Internet Shopping Mall)

  • 천인국
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.321-324
    • /
    • 2001
  • 본 논문은 인터넷 쇼핑몰에서의 효율적인 상품 추천 시스템의 구조를 제안한다. 본 상품 추천 시스템은 상품 추천의 2 가지 방법인 지식기반 상품 추천 방법과 collaborative filtering을 혼합하였으며 먼저 고객에게 질문을 던져서 고객의 요구 조건을 수집한 다음, 요구 조건과 상품 데이터베이스에 저장된 상품정보와 일치도를 계산하여 추천 후보 상품 리스트를 생성한다. 이 추천 상품 리스트에 속하는 상품에 대해서는 다시 collaborative filtering 방법이 적용된다. 즉, 비슷한 취향을 가지는 고객들이 높이 평가하는 제품들을 최종적으로 고객들에게 추천하게 된다. 이 방법은 기존의 방법들이 모두 특정한 상품 카테고리에 대해서만 효과적인데 데하여 제안된 방법은 모든 상품 카테고리에 적용할 수 있으며 collaborative filtering 방법을 후보 추천 상품에 대해서만 적용시킴으로써 이 방법의 단점인 많은 계산량을 줄일 수 있다. 제안된 시스템은 EJB(Enterprise Java Beans)를 사용하여 컴포넌트로 구현되었으며 이동통신기기 카테고리에 대하여 시험 구현되었다.

  • PDF

데이터마이닝과 다중모형조합기법을 이용한 온라인상점 상품추천시스템 개발

  • 이연경;김경재
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2004년도 추계학술대회
    • /
    • pp.340-348
    • /
    • 2004
  • 온라인상점의 상품추천시스템은 일대일마케팅의 대표적 실현수단으로써의 가치를 인정받고 있다. 대부분의 상품추천시스템은 시시각각 변화하는 소비자의 기호에 따라 상품을 어떻게 추천할 것인가에 대한 문제에 직면해 있다. 본 연구에서는 급변하는 온라인상점 환경에 탄력적으로 대응하기 위하여 데이터마이닝과 다중모형조합기법을 이용한 상품추천시스템 모형을 제안하고자 한다. 제안하는 상품추천시스템은 현재 운영중인 온라인상점 데이터로 프로토타입을 구축하고 실제 소비자에 대한 적용가능성을 검증하였으며, 그 결과 실제 유용할 것으로 확인되었다.

  • PDF

다단계 알고리즘을 이용한 개인화 상품추천 (Personalized Commodity Recommendation Using A Multi-Stage Algorithm)

  • 장병철;최덕원;이동철
    • 정보처리학회논문지D
    • /
    • 제10D권7호
    • /
    • pp.1225-1230
    • /
    • 2003
  • 많은 사이버 쇼핑몰들은 다양한 추천 방법을 도입하여 상품을 추천하고 있다. 상세한 알고리즘은 공개되어 있지 않지만 대부분 비교적 단순한 알고리즘을 쓰고 있다. 본 연구는 상품 자체의 특성, 소비자 집단의 특성, 그리고 소비자 개인의 특성을 고려한 다단계 알고리즘을 이용하여 상품추천 능력을 향상시키고자 시도하였다. 소비자와 관련된 더 많은 요인을 고려함에 따라 상품추천의 내용이 변화하는 사례를 도표로 비교 예시하였다.

필터링기법을 이용한 영화 추천시스템 알고리즘 개발에 관한 연구 (A study of development for movie recommendation system algorithm using filtering)

  • 김선옥;이수용;이석준;이희춘;지선수
    • Journal of the Korean Data and Information Science Society
    • /
    • 제24권4호
    • /
    • pp.803-813
    • /
    • 2013
  • 전자상거래에서 상품의 구입은 오프라인에서 구매하는 방식과는 차이가 있다. 오프라인에서 상품추천은 판매원의 추천에 의해 이루어지지만 온라인에서 상품 추천은 판매원이 상품 추천을 할 수가 없기 때문에 오프라인과는 다른 형태의 상품을 추천하게 된다. 추천시스템은 온라인 상거래에서 상품을 추천하는 방법으로 기존 상품을 구입한 고객의 선호도를 기반으로 상품을 구입하려는 고객의 선호도를 예측하여 추정된 선호도가 높은 상품을 고객에게 추천하는 방법이다. 협력적 필터링 알고리즘은 전자상거래의 상품추천 추천시스템에 사용되며 추정된 값들로 추천 상품 목록을 만들고 그 목록을 고객에게 추천을 하는 것이다. 이 논문에서 사용된 데이터집합은 Movielens 데이터집합인 100k 데이터집합과 1 million 데이터집합이며 일반화를 위해 2개의 데이터집합에서 유사한 결과를 도출하여 일반화시키고자 한다. 영화 추천시스템의 새로운 알고리즘을 제안하기 위해 기존의 알고리즘과 변형된 알고리즘에 의해 추정된 추정값들의 분포 특징을 분석과 응답자별로 분류해서 응답자별 분포의 특징을 분석하였다. 이 논문에서는 이웃기반 추천시스템 협력적 필터링 알고리즘을 개선하기 위해 기존의 알고리즘과 변형된 알고리즘을 바탕으로 새로운 알고리즘을 제안하였다.

데이터 마이닝을 이용한 인터넷 쇼핑몰 상품추천시스템

  • 김경재;김병국
    • 한국지능정보시스템학회:학술대회논문집
    • /
    • 한국지능정보시스템학회 2005년도 춘계학술대회
    • /
    • pp.258-265
    • /
    • 2005
  • 전자상거래의 확산에 따라 인터넷 쇼핑몰에서의 구매활동은 일반적인 현상이 되었다. 그 결과, 유사한 업종이나 업태의 인터넷 쇼핑몰이 범람하게 되었고 업체들 간의 경쟁도 심화되어 차별화된 서비스를 제공하지 않는 업체는 도태되기 쉬운 상황이다. 본 연구에서는 치열한 경쟁환경 하에서 인터넷 쇼핑몰의 차별화된 마케팅 서비스의 수단으로써 이용되고 있는 상품추천시스템의 개선된 모형을 제시하고자 한다. 본 연구에서 제안하는 모형은 전역 최적화 기법 중의 하나인 유전자 알고리즘을 데이터 마이닝의 도구로 활용한 인터넷 쇼핑몰에서의 개인화된 상품추천시스템 모형이다. 유전자 알고리즘은 추출하기가 어려운 소비자의 성향을 데이터를 통해 추출하고 이에 맞는 상품군을 선택할 수 있도록 해주는 최적화 기법으로 상품추천시스템의 추천엔진으로써 유용할 것으로 기대된다. 본 연구에서는 제안한 유전자 알고리즘에 기반한 추천 규칙들이 장착된 웹 기반의 개인화된 상품추천시스템의 프로토타입을 개발하고 이에 대한 실제 사용자들의 이용 만족도를 확인함으로써 본 연구에서 제안한 방법론의 유용성을 확인하고자 한다.

  • PDF

인터텟 쇼핑몰에서 구매시점의 추천 (Recommendation of Buying Points for Internet Shopping Malls)

  • 장은실;이용규
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2004년도 춘계학술발표대회논문집
    • /
    • pp.491-494
    • /
    • 2004
  • 최근 인터넷 쇼핑몰에서 상품을 구매하는 고객들에게 편의성과 효율성을 제공하기 위하여 구매자들의 선호도나 가격에 맞는 상품을 추천해 주는 연구들이 활발하게 진행되고 있다. 그러나 이러한 상품을 추천하는 연구들은 다양하게 발전하고 있지만 추천된 상품들의 구매시점에 관한 연구는 찾아보기 어렵다. 이에 본 논문에서는 인터넷 쇼핑몰의 적극적인 마케팅 일환으로 상품을 구매할 시점을 추천해 주는 방안을 제안한다. 이를 위하여 과거의 판매 기록 데이터베이스에 있는 판매가격의 기준 시계열 패턴과 유사한 시계열 패턴을 정규화 변환된 유사도로써 검색한다. 검색된 과거 가격 패턴을 기준으로 미래 가격 패턴을 분석하여, 미래 가격 패턴의 변화에 따라 상품 구매시점을 추천한다. 또한 본 논문에서는 이러한 구매시점을 추천하는 상품 추천 시스템을 설계한다.

  • PDF