본 연구는 전자교육(e-Learning)과 집합교육의 장단점을 상호보완하는 교육형태인 블렌디드 학습(blended learning)이 고등학교 전자계산의 학습성취에 미치는 효과성을 검증하는데 목적이 있다. 이 목적을 달성하고자, 블렌디드 학습모형을 도출하고 이를 토대로 온라인 학습환경을 구축하고, 경기도내 C고등학생 136명을 대상으로 실험집단(68명)과 비교집단(68명)을 구성했다. 두 집단을 대상으로 블렌디드 학습(실험집단)과 전통식 면대면 교실학습(비교집단)을 실시한 결과, 블렌디드 학습에서의 학업성취도가 전통적인 면대면 집합학습보다 더 높은 것으로 나타났다(t=-3.16, p=.0019). 이러한 결과는 블렌디드 학습이 전자계산 학습의 효과성에 긍정적인 결과를 가져다 줄 가능성을 보여 준 것으로, 블렌디드 학습이 기존 전자교육의 단점을 보완해 주는 대안적인 교수 학습방법으로 사용될 수 있음을 시사해 준다.
There are two important problems in improving text classification systems based on machine learning approach. The first one, called "selection problem", is how to select a minimum number of informative documents from a given document collection. The second one, called "composition problem", is how to reorganize selected training documents so that they can fit an adopted learning method. The former problem is addressed in "active learning" algorithms, and the latter is discussed in "boosting" algorithms. This paper proposes a new learning method, called AdaBUS, which proactively solves the above problems in the context of Naive Bayes classification systems. The proposed method constructs more accurate classification hypothesis by increasing the valiance in "weak" hypotheses that determine the final classification hypothesis. Consequently, the proposed algorithm yields perturbation effect makes the boosting algorithm work properly. Through the empirical experiment using the Routers-21578 document collection, we show that the AdaBUS algorithm more significantly improves the Naive Bayes-based classification system than other conventional learning methodson system than other conventional learning methods
We propose a method of selecting initial training examples for active learning so that it can reach high accuracy faster with fewer further queries. Our method is based on the assumption that an active learner can reach higher performance when given an initial training set consisting of diverse and typical examples rather than similar and special ones. To obtain a good initial training set, we first cluster examples by using k-means clustering algorithm to find groups of similar examples. Then, a representative example, which is the closest example to the cluster's centroid, is selected from each cluster. After these representative examples are labeled by querying to the user for their categories, they can be used as initial training examples. We also suggest a method of using the centroids as initial training examples by labeling them with categories of corresponding representative examples. Experiments with various text data sets have shown that the active learner starting from the initial training set selected by our method reaches higher accuracy faster than that starting from randomly generated initial training set.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2005.11a
/
pp.199-202
/
2005
TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 다국적 언어의 문자 인식은 표준패턴의 구조적 분석이 쉽지 않을 뿐만 아니라 학습패턴 집합의 규모와 특징의 수가 증가함으로 인하여 특징추출 및 인식 과정에서 방대한 계산량이 요구된다. 이에 본 연구에서는 학습 데이터에 포함되는 다량의 특징 집합으로부터 인식에 필요한 효과적인 특징을 선별함으로써 패턴 분류기의 효율성을 개선하기 위한 방법론을 고찰한다. 이를 위하여 수정된 형태의 Adaboost 기법을 제안하고 이를 적용한 실험 결과로부터 그 유용성을 고찰한다. 제안된 알고리즘은 초기의 특징 집합을 취약한 성능을 갖는 다수의 분류기(classifier)로서 고려하며, 이로부터 반복학습을 통하여 개선된 분류기를 점진적으로 선별해 나가게 된다. 학습의 원리는 주어진 학습패턴 집합에 기초하여 일종의 교사학습(supervised learning) 방식으로 이루어진다. 각 패턴에 할당된 가중치 값은 각 단계에서 산출되는 분류결과에 따라 적응적으로 수정되어 반복학습이 진행됨에 따라 점차 보완적 성능을 갖는 분류기를 선택할 수 있게 한다. 즉, 주어진 각 학습패턴에 대하여 초기에 균등한 가중치가 부여되며, 반복학습의 각 단계에서 적용되는 분류기의 출력을 분석하여 오분류된 패턴의 가중치 분포를 증가시켜 나간다. 본 연구에서는 실제 응용으로서 OSD 메뉴검증 시스템을 대상으로 제안된 이론을 적용하고 그 타당성을 평가한다.
Journal of Agricultural Extension & Community Development
/
v.20
no.3
/
pp.603-642
/
2013
Community Business is defined as profit-making enterprise for which a community residents can take to solve their own problems. It is comprised of some sequential activities: identifying problems, collective learning, organization. In rural South Korea, the central and local governments are promoting Community Businesses. However, the related policy programs are missing the very important perspective that self-help approach be essential in Community Business. Therefore, the policy programs should be changed so that they could effectively help community's autonomous practice.
Journal of the Korean Institute of Intelligent Systems
/
v.19
no.1
/
pp.54-61
/
2009
This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.
race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.
Proceedings of the Korea Database Society Conference
/
2001.06a
/
pp.331-341
/
2001
본 논문에서는 Naive Bayes 문서 분류기를 위한 새로운 학습모델을 제안한다. 이 모델에서는 라벨이 없는 문서들의 집합으로부터 선택한 적은 수의 학습 문서들을 이용하여 문서 분류기를 재학습한다. 본 논문에서는 이러한 학습 방법을 따를 경우 작은 비용으로도 문서 분류기의 정확도가 크게 향상될 수 있다는 사실을 보인다. 이와 같이, 알고리즘을 통해 라벨이 없는 문서들의 집합으로부터 정보량이 큰 문서를 선택한 후, 전문가가 이 문서에 라벨을 부여하는 방식으로 학습문서를 결정하는 것을 selective sampling이라 한다. 본 논문에서는 이러한 selective sampling 문제를 Naive Bayes 문서 분류기에 적용한다. 제안한 학습 방법에서는 라벨이 없는 문서들의 집합으로부터 재학습 문서를 선택하는 기준 측정치로서 평균절대편차(Mean Absolute Deviation), 엔트로피 측정치를 사용한다. 실험을 통해서 제안한 학습 방법이 기존의 방법인 신뢰도(Confidence measure)를 이용한 학습 방법보다 Naive Bayes 문서 분류기의 성능을 더 많이 향상시킨다는 사실을 보인다.
This paper proposes an agent-based adaptive tutoring system that monitors learning process of learners' and provides learning materials dynamically according to the analyzed learning character. Furthermore, it uses fuzzy concept to evaluate learners' ability and to provide learning materials appropriate to the level of learners'. For this, we design a courseware knowledge structure systematically and then construct a fuzzy level set on the basis of it considering importance of learning targets, difficulty of learning materials and relation degree between learning targets and learning materials. Using agent, monitoring continually the learning process of learners 'inferencing to offer proper hints in case of incorrect answer in learning assesment, composing dynamically learning materials according to the learning feature and the evaluation of assesment, our system implements effectively adaptive instruction system. Moreover, appling the fuzzy concept to the system could naturally consider and ideal with various and uncertain items of learning environment thus could offer more flexible and effective instruction-learning methods.
Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 후반부를 1차 및 2차 함수식으로 나타내며 Mamdani 모델과 함께 가장 널리 사용되는 모델이다. 본 연구의 Interval Type-2 TSK FLS은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 Type-1 퍼지집합인 1차식을 사용한다. 또한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 오류역전파 학습알고리즘을 사용하여 파라미터들을 최적화 한다. 또한 학습에 앞서 PSO(Particle Swarm Optimization) 알고리즘을 사용하여 최적 학습률을 찾아 모델의 학습능력을 보다 효율적으로 한다. 본 논문에서는 Type-1과 Type-2 FLS의 성능을 가스로 공정 데이터를 적용하여 두 모델의 성능을 비교하고 노이즈를 추가한 데이터를 이용하여 노이즈에 대한 성능도 비교 분석한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.