• 제목/요약/키워드: 집합적 학습

Search Result 363, Processing Time 0.023 seconds

The Effect of Blended Learning on Learning Achievement of Computer Education in High School (고등학교 전산교육에서 블렌디드 학습이 학업성취도에 미치는 효과)

  • Seo, In-Soon;Kim, Sung-Wan;Seo, Jeong-Man
    • KSCI Review
    • /
    • v.15 no.1
    • /
    • pp.111-116
    • /
    • 2007
  • 본 연구는 전자교육(e-Learning)과 집합교육의 장단점을 상호보완하는 교육형태인 블렌디드 학습(blended learning)이 고등학교 전자계산의 학습성취에 미치는 효과성을 검증하는데 목적이 있다. 이 목적을 달성하고자, 블렌디드 학습모형을 도출하고 이를 토대로 온라인 학습환경을 구축하고, 경기도내 C고등학생 136명을 대상으로 실험집단(68명)과 비교집단(68명)을 구성했다. 두 집단을 대상으로 블렌디드 학습(실험집단)과 전통식 면대면 교실학습(비교집단)을 실시한 결과, 블렌디드 학습에서의 학업성취도가 전통적인 면대면 집합학습보다 더 높은 것으로 나타났다(t=-3.16, p=.0019). 이러한 결과는 블렌디드 학습이 전자계산 학습의 효과성에 긍정적인 결과를 가져다 줄 가능성을 보여 준 것으로, 블렌디드 학습이 기존 전자교육의 단점을 보완해 주는 대안적인 교수 학습방법으로 사용될 수 있음을 시사해 준다.

  • PDF

An Active Learning-based Method for Composing Training Document Set in Bayesian Text Classification Systems (베이지언 문서분류시스템을 위한 능동적 학습 기반의 학습문서집합 구성방법)

  • 김제욱;김한준;이상구
    • Journal of KIISE:Software and Applications
    • /
    • v.29 no.12
    • /
    • pp.966-978
    • /
    • 2002
  • There are two important problems in improving text classification systems based on machine learning approach. The first one, called "selection problem", is how to select a minimum number of informative documents from a given document collection. The second one, called "composition problem", is how to reorganize selected training documents so that they can fit an adopted learning method. The former problem is addressed in "active learning" algorithms, and the latter is discussed in "boosting" algorithms. This paper proposes a new learning method, called AdaBUS, which proactively solves the above problems in the context of Naive Bayes classification systems. The proposed method constructs more accurate classification hypothesis by increasing the valiance in "weak" hypotheses that determine the final classification hypothesis. Consequently, the proposed algorithm yields perturbation effect makes the boosting algorithm work properly. Through the empirical experiment using the Routers-21578 document collection, we show that the AdaBUS algorithm more significantly improves the Naive Bayes-based classification system than other conventional learning methodson system than other conventional learning methods

Selection of An Initial Training Set for Active Learning Using Cluster-Based Sampling (능동적 학습을 위한 군집기반 초기훈련집합 선정)

  • 강재호;류광렬;권혁철
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.859-868
    • /
    • 2004
  • We propose a method of selecting initial training examples for active learning so that it can reach high accuracy faster with fewer further queries. Our method is based on the assumption that an active learner can reach higher performance when given an initial training set consisting of diverse and typical examples rather than similar and special ones. To obtain a good initial training set, we first cluster examples by using k-means clustering algorithm to find groups of similar examples. Then, a representative example, which is the closest example to the cluster's centroid, is selected from each cluster. After these representative examples are labeled by querying to the user for their categories, they can be used as initial training examples. We also suggest a method of using the centroids as initial training examples by labeling them with categories of corresponding representative examples. Experiments with various text data sets have shown that the active learner starting from the initial training set selected by our method reaches higher accuracy faster than that starting from randomly generated initial training set.

A Feature Selection Technique for Multi-lingual Character Recognition (TV 제어 메뉴의 다국적 언어 인식을 위한 특징 선정 기법)

  • Kang, Keun-Seok;Park, Hyun-Jung;Kim, Ho-Joon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.199-202
    • /
    • 2005
  • TV OSD(On Screen Display) 메뉴 자동검증 시스템에서 다국적 언어의 문자 인식은 표준패턴의 구조적 분석이 쉽지 않을 뿐만 아니라 학습패턴 집합의 규모와 특징의 수가 증가함으로 인하여 특징추출 및 인식 과정에서 방대한 계산량이 요구된다. 이에 본 연구에서는 학습 데이터에 포함되는 다량의 특징 집합으로부터 인식에 필요한 효과적인 특징을 선별함으로써 패턴 분류기의 효율성을 개선하기 위한 방법론을 고찰한다. 이를 위하여 수정된 형태의 Adaboost 기법을 제안하고 이를 적용한 실험 결과로부터 그 유용성을 고찰한다. 제안된 알고리즘은 초기의 특징 집합을 취약한 성능을 갖는 다수의 분류기(classifier)로서 고려하며, 이로부터 반복학습을 통하여 개선된 분류기를 점진적으로 선별해 나가게 된다. 학습의 원리는 주어진 학습패턴 집합에 기초하여 일종의 교사학습(supervised learning) 방식으로 이루어진다. 각 패턴에 할당된 가중치 값은 각 단계에서 산출되는 분류결과에 따라 적응적으로 수정되어 반복학습이 진행됨에 따라 점차 보완적 성능을 갖는 분류기를 선택할 수 있게 한다. 즉, 주어진 각 학습패턴에 대하여 초기에 균등한 가중치가 부여되며, 반복학습의 각 단계에서 적용되는 분류기의 출력을 분석하여 오분류된 패턴의 가중치 분포를 증가시켜 나간다. 본 연구에서는 실제 응용으로서 OSD 메뉴검증 시스템을 대상으로 제안된 이론을 적용하고 그 타당성을 평가한다.

  • PDF

Community Business and Collective Learning (커뮤니티 비즈니스와 집합적 학습 -조력 집단에 대한 성찰-)

  • Kim, Jeong Seop
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.3
    • /
    • pp.603-642
    • /
    • 2013
  • Community Business is defined as profit-making enterprise for which a community residents can take to solve their own problems. It is comprised of some sequential activities: identifying problems, collective learning, organization. In rural South Korea, the central and local governments are promoting Community Businesses. However, the related policy programs are missing the very important perspective that self-help approach be essential in Community Business. Therefore, the policy programs should be changed so that they could effectively help community's autonomous practice.

Electromyogram Pattern Recognition by Hierarchical Temporal Memory Learning Algorithm (시공간적 계층 메모리 학습 알고리즘을 이용한 근전도 패턴인식)

  • Sung, Moo-Joung;Chu, Jun-Uk;Lee, Seung-Ha;Lee, Yun-Jung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.54-61
    • /
    • 2009
  • This paper presents a new electromyogram (EMG) pattern recognition method based on the Hierarchical Temporal Memory (HTM) algorithm which is originally devised for image pattern recognition. In the modified HTM algorithm, a simplified two-level structure with spatial pooler, temporal pooler, and supervised mapper is proposed for efficient learning and classification of the EMG signals. To enhance the recognition performance, the category information is utilized not only in the supervised mapper but also in the temporal pooler. The experimental results show that the ten kinds of hand motion are successfully recognized.

Face Detection Based on Incremental Learning from Very Large Size Training Data (대용량 훈련 데이타의 점진적 학습에 기반한 얼굴 검출 방법)

  • 박지영;이준호
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.7
    • /
    • pp.949-958
    • /
    • 2004
  • race detection using a boosting based algorithm requires a very large size of face and nonface data. In addition, the fact that there always occurs a need for adding additional training data for better detection rates demands an efficient incremental teaming algorithm. In the design of incremental teaming based classifiers, the final classifier should represent the characteristics of the entire training dataset. Conventional methods have a critical problem in combining intermediate classifiers that weight updates depend solely on the performance of individual dataset. In this paper, for the purpose of application to face detection, we present a new method to combine an intermediate classifier with previously acquired ones in an optimal manner. Our algorithm creates a validation set by incrementally adding sampled instances from each dataset to represent the entire training data. The weight of each classifier is determined based on its performance on the validation set. This approach guarantees that the resulting final classifier is teamed by the entire training dataset. Experimental results show that the classifier trained by the proposed algorithm performs better than by AdaBoost which operates in batch mode, as well as by ${Learn}^{++}$.

A Study on Incremental Learning Model for Naive Bayes Text Classifier (Naive Bayes 문서 분류기를 위한 점진적 학습 모델 연구)

  • 김제욱;김한준;이상구
    • Proceedings of the Korea Database Society Conference
    • /
    • 2001.06a
    • /
    • pp.331-341
    • /
    • 2001
  • 본 논문에서는 Naive Bayes 문서 분류기를 위한 새로운 학습모델을 제안한다. 이 모델에서는 라벨이 없는 문서들의 집합으로부터 선택한 적은 수의 학습 문서들을 이용하여 문서 분류기를 재학습한다. 본 논문에서는 이러한 학습 방법을 따를 경우 작은 비용으로도 문서 분류기의 정확도가 크게 향상될 수 있다는 사실을 보인다. 이와 같이, 알고리즘을 통해 라벨이 없는 문서들의 집합으로부터 정보량이 큰 문서를 선택한 후, 전문가가 이 문서에 라벨을 부여하는 방식으로 학습문서를 결정하는 것을 selective sampling이라 한다. 본 논문에서는 이러한 selective sampling 문제를 Naive Bayes 문서 분류기에 적용한다. 제안한 학습 방법에서는 라벨이 없는 문서들의 집합으로부터 재학습 문서를 선택하는 기준 측정치로서 평균절대편차(Mean Absolute Deviation), 엔트로피 측정치를 사용한다. 실험을 통해서 제안한 학습 방법이 기존의 방법인 신뢰도(Confidence measure)를 이용한 학습 방법보다 Naive Bayes 문서 분류기의 성능을 더 많이 향상시킨다는 사실을 보인다.

  • PDF

Fuzzy Set Based Agent System for Adaptive Tutoring (적응형 교수 학습을 위한 퍼지 집합 기반 에이젼트 시스템)

  • Choi, Sook-Young;Yang, Hyung-Jeong
    • The KIPS Transactions:PartA
    • /
    • v.10A no.4
    • /
    • pp.321-330
    • /
    • 2003
  • This paper proposes an agent-based adaptive tutoring system that monitors learning process of learners' and provides learning materials dynamically according to the analyzed learning character. Furthermore, it uses fuzzy concept to evaluate learners' ability and to provide learning materials appropriate to the level of learners'. For this, we design a courseware knowledge structure systematically and then construct a fuzzy level set on the basis of it considering importance of learning targets, difficulty of learning materials and relation degree between learning targets and learning materials. Using agent, monitoring continually the learning process of learners 'inferencing to offer proper hints in case of incorrect answer in learning assesment, composing dynamically learning materials according to the learning feature and the evaluation of assesment, our system implements effectively adaptive instruction system. Moreover, appling the fuzzy concept to the system could naturally consider and ideal with various and uncertain items of learning environment thus could offer more flexible and effective instruction-learning methods.

Design of Interval Type-2 Fuzzy Inference System and Its optimization Realized by PSO (Interval Type-2 퍼지 추론 시스템의 설계와 PSO를 이용한 최적화)

  • Ji, Kwang-Hee;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.251-252
    • /
    • 2008
  • Type-2 퍼지 집합은 Type-1 퍼지 집합에서는 다루기 어려운 언어적인 불확실성을 더욱 효과적으로 다룰 수 있다. TSK 퍼지 로직 시스템(TSK Fuzzy Logic Systems; TSK FLS)은 후반부를 1차 및 2차 함수식으로 나타내며 Mamdani 모델과 함께 가장 널리 사용되는 모델이다. 본 연구의 Interval Type-2 TSK FLS은 전반부에서 Type-2 퍼지 집합을 이용하고 후반부는 계수가 Type-1 퍼지집합인 1차식을 사용한다. 또한 전반부는 가우시안 형태의 Type-2 멤버쉽 함수를 사용하며, 오류역전파 학습알고리즘을 사용하여 파라미터들을 최적화 한다. 또한 학습에 앞서 PSO(Particle Swarm Optimization) 알고리즘을 사용하여 최적 학습률을 찾아 모델의 학습능력을 보다 효율적으로 한다. 본 논문에서는 Type-1과 Type-2 FLS의 성능을 가스로 공정 데이터를 적용하여 두 모델의 성능을 비교하고 노이즈를 추가한 데이터를 이용하여 노이즈에 대한 성능도 비교 분석한다.

  • PDF