• Title/Summary/Keyword: 집합감정

Search Result 38, Processing Time 0.023 seconds

Analysis of a Causal Relationship between Collective Emotion and Behavior to Sport Issues in SNS (SNS에서의 스포츠이슈에 대한 집단감정과 집합행동의 관계)

  • Lee, Jong-Kil;Lee, Kong-Joo;Yang, Jae-Sik
    • Journal of Convergence for Information Technology
    • /
    • v.9 no.2
    • /
    • pp.165-171
    • /
    • 2019
  • The purpose of this study was to analyse a causal relationship between collective emotion and behavior to sport issues in SNS. For the purpose, 5 sports issues with obvious collective behavior and 5 concerned articles in typical portal sites were selected. From those, each 100 comments with highest recommendation and 5 obvious actions made by the crowd were sampled as the analysis subjects. The results of statistical analyses on collective emotion and behavior materials were as follows. First, collective emotions showed differences by the sports issues. Second, there was a significant causal relationship between collective emotion and behavior in SNS. This study could receive a favorable evaluation due to the statistical analysis on a causal relationship between collective emotion and behavior.

Fuzzy Model for Speech Emotion Recognition (음성으로부터의 감정 인식을 위한 퍼지모델 제안)

  • Moon, Byung-Hyun;Jang, In-Hoon;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2008.04a
    • /
    • pp.115-118
    • /
    • 2008
  • 본 논문에서는 음성으로부터 감정을 인식하고 감성적인 운율로 음성 출력을 산출해 내는 시스템을 제안 한다. 음성적인 운율로부터 감정을 인식하기 위해서 퍼지룰(rule)을 이용한다. 본 논문에서 감정 인식 시스템은 음성 샘플들로 학습 데이터를 구축하고 이를 기반으로 하여 추출된 20개의 특징 집합으로부터 가장 중요한 특징들을 자동적으로 선택한다. 화남, 놀람, 행복, 슬픔, 보통의 5가지 감정 상태를 구분하기 위하여 접근법에 기반한 퍼지를 이용하였다.

  • PDF

Automatic Generation of Code-clone Reference Corpus (코드클론 표본 집합체 자동 생성기)

  • Lee, Hyo-Sub;Doh, Kyung-Goo
    • Journal of Software Assessment and Valuation
    • /
    • v.7 no.1
    • /
    • pp.29-39
    • /
    • 2011
  • To evaluate the quality of clone detection tools, we should know how many clones the tool misses. Hence we need to have the standard code-clone reference corpus for a carefully chosen set of sample source codes. The reference corpus available so far has been built by manually collecting clones from the results of various existing tools. This paper presents a tree-pattern-based clone detection tool that can be used for automatic generation of reference corpus. Our tool is compared with CloneDR for precision and Bellon's reference corpus for recall. Our tool finds no false positives and 2 to 3 times more clones than CloneDR. Compared to Bellon's reference corpus, our tools shows the 93%-to-100% recall rate and detects far more clones.

Sentiment Prediction using Emotion and Context Information in Unstructured Documents (비정형 문서에서 감정과 상황 정보를 이용한 감성 예측)

  • Kim, Jin-Su
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.10
    • /
    • pp.40-46
    • /
    • 2020
  • With the development of the Internet, users share their experiences and opinions. Since related keywords are used witho0ut considering information such as the general emotion or genre of an unstructured document such as a movie review, the sensitivity accuracy according to the appropriate emotional situation is impaired. Therefore, we propose a system that predicts emotions based on information such as the genre to which the unstructured document created by users belongs or overall emotions. First, representative keyword related to emotion sets such as Joy, Anger, Fear, and Sadness are extracted from the unstructured document, and the normalized weights of the emotional feature words and information of the unstructured document are trained in a system that combines CNN and LSTM as a training set. Finally, by testing the refined words extracted through movie information, morpheme analyzer and n-gram, emoticons, and emojis, it was shown that the accuracy of emotion prediction using emotions and F-measure were improved. The proposed prediction system can predict sentiment appropriately according to the situation by avoiding the error of judging negative due to the use of sad words in sad movies and scary words in horror movies.

A Study on Literary Therapeutic Codes of Sijo Fused by Transference (전이에 의해 융합되는 시조의 문학치료 코드 연구)

  • Park, In-Kwa
    • Journal of the Korea Convergence Society
    • /
    • v.8 no.10
    • /
    • pp.167-172
    • /
    • 2017
  • The purpose of this study is to analyze the emotional codes of Sijo, which has been acknowledged to have excellent therapeutic function, to activate the contents of the therapy of humanities. Sijo as a function of healing forms emotional codes of therapy, which is the total of emotions, through the fusion of emotions formed during the process of appreciation of various works. This process enables the literary therapeutic activities to proceed physiologically in the human body. Just as machine learning is self-learning by cognitive functions, the coding process for encoding and re-encoding at all times operates on collections of numerous neurons in the human system. In such a process, it is predicted that amino acids are synthesized in the human body by collective encoding of emotion codes. These amino acids regulate the signaling system of the human body. In the future, if the study on the healing process as such at the contact point of humanities and human physiology proceeds, it is expected that a program of higher quality humanistic therapy will be activated.

A Study on Visual Perception based Emotion Recognition using Body-Activity Posture (사용자 행동 자세를 이용한 시각계 기반의 감정 인식 연구)

  • Kim, Jin-Ok
    • The KIPS Transactions:PartB
    • /
    • v.18B no.5
    • /
    • pp.305-314
    • /
    • 2011
  • Research into the visual perception of human emotion to recognize an intention has traditionally focused on emotions of facial expression. Recently researchers have turned to the more challenging field of emotional expressions through body posture or activity. Proposed work approaches recognition of basic emotional categories from body postures using neural model applied visual perception of neurophysiology. In keeping with information processing models of the visual cortex, this work constructs a biologically plausible hierarchy of neural detectors, which can discriminate 6 basic emotional states from static views of associated body postures of activity. The proposed model, which is tolerant to parameter variations, presents its possibility by evaluating against human test subjects on a set of body postures of activities.

The Design of Fuzzy-Based Peer Relationship Analysis System Using $\alpha$-cut ($\alpha$-수준집합을 이용한 퍼지기반 교우관계 분석시스템 설계)

  • Jeong, In-Joon;Jun, Woo-Chun
    • 한국정보교육학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.257-266
    • /
    • 2005
  • 학급에서의 아동 상호간의 관계 파악은 아동 성향 파악 및 생활지도 등에 유용하게 사용될 수 있다. 이러한 교우관계를 파악하게 되면 서로 잘 어울리는 친구들이나 외톨이로 있는 아동을 미리 찾아내어 아이들 상호간의 감정의 흐름을 파악할 수 있고 서로 협력하는 학급을 만들기 쉬울 것이다. 이에 본 논문에서는 학급 아동 상호간의 호감도에 의해 교우관계를 분석할 수 있는 시스템을 퍼지 (Fuzzy) 이론을 응용하여 설계하고 그룹화 할 수 있는 방안을 제시하였다. 교우관계의 특성상 애매모호하고 불확실한 감정과 호감도를 몇 마디 말 또는 '좋아한다', '좋아하지 않는다'는 이분법적인 방법으로 분석하기에는 아동 상호간에 복잡한 감정을 다 표현하기 어렵기 때문에 퍼지이론을 적용하여 수치화된 정보로 상대적 비교가 가능하도록 함으로써 좀 더 정확한 아동 상호 관계를 분석할 수 있도록 설계하였다. 또한, 퍼지이론을 바탕으로 연결차수를 계산한 그룹화 방안을 제시하였다. 본 논문에서 제안하는 시스템과 분석화 방법의 특징은 첫째, 인간관계의 애매하고 모호한 점을 상대적 비교가 가능하게 함으로써 정확한 분석을 가능하게 하고, 둘째, 퍼지 이론의 적용을 통하여 해밍거리 (Hamming Distance)에 의한 유사도 분석이 가능한 시스템과 $\alpha$-수준집합 ($\alpha$-cut)에 의한 그룹화 방법을 제안하였으며, 셋째, 교육현장에서 발생할 수 있는 애매한 상황과 아동의 성향파악 등 수치적인 파악이 불가능한 부분을 분석이 가능한 데이터로 만들 수 있는 기초를 마련하였다.

  • PDF

Generating a Korean Sentiment Lexicon Through Sentiment Score Propagation (감정점수의 전파를 통한 한국어 감정사전 생성)

  • Park, Ho-Min;Kim, Chang-Hyun;Kim, Jae-Hoon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.2
    • /
    • pp.53-60
    • /
    • 2020
  • Sentiment analysis is the automated process of understanding attitudes and opinions about a given topic from written or spoken text. One of the sentiment analysis approaches is a dictionary-based approach, in which a sentiment dictionary plays an much important role. In this paper, we propose a method to automatically generate Korean sentiment lexicon from the well-known English sentiment lexicon called VADER (Valence Aware Dictionary and sEntiment Reasoner). The proposed method consists of three steps. The first step is to build a Korean-English bilingual lexicon using a Korean-English parallel corpus. The bilingual lexicon is a set of pairs between VADER sentiment words and Korean morphemes as candidates of Korean sentiment words. The second step is to construct a bilingual words graph using the bilingual lexicon. The third step is to run the label propagation algorithm throughout the bilingual graph. Finally a new Korean sentiment lexicon is generated by repeatedly applying the propagation algorithm until the values of all vertices converge. Empirically, the dictionary-based sentiment classifier using the Korean sentiment lexicon outperforms machine learning-based approaches on the KMU sentiment corpus and the Naver sentiment corpus. In the future, we will apply the proposed approach to generate multilingual sentiment lexica.

A Document Sentiment Classification System Based on the Feature Weighting Method Improved by Measuring Sentence Sentiment Intensity (문장 감정 강도를 반영한 개선된 자질 가중치 기법 기반의 문서 감정 분류 시스템)

  • Hwang, Jae-Won;Ko, Young-Joong
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.6
    • /
    • pp.491-497
    • /
    • 2009
  • This paper proposes a new feature weighting method for document sentiment classification. The proposed method considers the difference of sentiment intensities among sentences in a document. Sentiment features consist of sentiment vocabulary words and the sentiment intensity scores of them are estimated by the chi-square statistics. Sentiment intensity of each sentence can be measured by using the obtained chi-square statistics value of each sentiment feature. The calculated intensity values of each sentence are finally applied to the TF-IDF weighting method for whole features in the document. In this paper, we evaluate the proposed method using support vector machine. Our experimental results show that the proposed method performs about 2.0% better than the baseline which doesn't consider the sentiment intensity of a sentence.

Analysis of Emotions of Anti-Korea and Anti-Japan in International Soccer Games of Korea vs. Japan (한국과 일본 간 축구경기와 반일·반한 감정의 관계)

  • Lee, Jong-Kil;Lee, Kong-Joo;Yang, Jae-Sik
    • Journal of Digital Convergence
    • /
    • v.17 no.2
    • /
    • pp.463-473
    • /
    • 2019
  • This study aimed to investigate the relationship between soccer games of Korea vs. Japan and emotions of anti-Japan and anti-Korea, empirically. For that, this study selected 2,400 comments from Naver and 5CH where people could write their SNS comments on EAFF E-1 football championship 2017. The study results got by frequency analysis and one-way ANOVA were as follows. First, Korean showed amity with own team and hostility to the opponents, and stronger hostility toward Japan. Japanese showed hostility to own team, and it was especially strong when vs. Korea. Second, Korean showed stronger hostility toward Japan than others. Japanese showed stronger hostility to own team when vs Korea. From those results, this study could conclude that soccer games of Korea vs. Japan could be a field to express those emotions rather than effect on the emotions of anti-Korea and anti-Japan. By the empirical method of this study on the emotions of anti-Japan and anti-Korea unlike advance studies, this could receive favorable evaluation.