• Title/Summary/Keyword: 집속초음파

Search Result 99, Processing Time 0.033 seconds

A Development of an Array Guided Wave Ultrasonic Testing System for pipe inspection (배관 진단을 위한 배열형 유도초음파 검사시스템 개발)

  • Cho, Hyun-Joon;Lee, Dong-Hoon;Kang, To;Park, Jin-Ho;Han, Seong-Jin
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.29-35
    • /
    • 2015
  • Pipes, commonly used in energy and petrochemical facilities, have various types of defects induced by diverse factors and this is often issued in NDE society. Ultrasonic guided wave inspection method are normally adopted to insure the healthiness of industry pipes. Recently, ultrasonic guided wave inspection is shifted to adopt arrayed probes and system. And here we developed an array guided wave ultrasonic testing system can adapt arrayed probes and focusing methods. In this paper, an array guided wave ultrasonic testing system is presented including a transmitting focusing technique and flaw signal level enhancement.

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .

The Estimation of Transient Temperature Distributions in Tumor Model during Ultrasonic Hyperthermia (초음파 Hyperthermia에 의한 종양모델내의 동적 온도분포 추정)

  • 박태연;성굉모
    • The Journal of the Acoustical Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.46-56
    • /
    • 1986
  • Hyperthermia를 사용하여 종양세포를 치료하는데 있어서 시간에 따른 동적 온도분포를 추정하 고 또, 그 온도분포에 관계하는 인자들이 동적 온도특성에 미치는 영향을 살펴보는 것은 실제 치료시에 정확한 온도제어를 위해서 반드시 필요하다. 본 논문에서는 몸속 10cm 깊이에 존재하는 원통형 종양모 델을 설정하고 초음파 동심환 변환기로 열을 집속시켰을 때 동적 온도분포 추정을 위해서 2차원 유한요 소법과 유한차분법을 이용하였다. 결과로서, 동적 온도분포에 가장 큰 영향을 미치는 인자는 혈류량이었 고, 추출된 동적 온도분포 특성값을 가지고 간단한 ON/OFF 온도제어에 적용할 수 있음을 보였다.

  • PDF

A Study on Development of Acoustic Tweezer System Using Standing Waves and Very High Frequency Focused Beams (정상파와 초고주파 집속 빔을 이용한 음향집게시스템의 개발에 관한 연구)

  • Yang, Jeong-Won;Ha, Kang-Lyeol;Kim, Moo-Joon;Lee, Jung-Woo;Shung, K.K.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.357-364
    • /
    • 2008
  • For the purpose of possibility study on development of an acoustic tweezer using standing waves and very high frequency ultrasound focused beams, a system which can manipulate the position of particles in water has been constructed. It can move the particles to near focal point of a focused beam by the radiation force of standing waves, and then the particles would be trapped by the radiating force of the focused beam. The results show that micro sphere particles were trapped well at nodes of the standing waves and their position can be easily manipulated by frequency control. And, even though the radiation force by single focused beam pushes a particle away from the transducer, two focused confronted beams can trap it at near center.

Fast Acoustic Radiation Force Impulse Imaging Using Non-focused Transmission in Medical Ultrasound Imaging (초음파 의료 영상에서 비집속 송신을 이용한 고속 음향 복사력 임펄스 영상법)

  • Choi, Seung-Min;Park, Jeong-Man;Kwon, Sung-Jae;Jeong, Mok-Kun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.31 no.3
    • /
    • pp.151-160
    • /
    • 2012
  • In medical ultrasound imaging, elasticity imaging helps to diagnose tumors such as cancer. This paper is concerned with the application of acoustic radiation force to soft tissue of interest to implement elasticity imaging. In order to reduce the data acquisition time, instead of relying on transmit focusing, a plane wave of burst type is transmitted to apply the acoustic radiation force simultaneously to an entire imaging region to be observed. A homogeneous phantom experiment confirms that increasing the transmit excitation duration instead of employing transmit focusing generates a high enough acoustic radiation force to obtain elasticity images. It is found, however, that a different displacement versus time characteristic is observed unlike the case of using a conventional focused acoustic radiation force. Experimental results obtained through the use of an ultrasound phantom and a bovine liver show that lesions can be correctly differentiated.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

A Study on the Efficiency Evaluation of Ultrasound Therapy Using Varicose Vein Simulated Tissue Phantom and Tissue Equivalent Phantom (하지정맥류 모사 생체조직 팬텀과 조직등가 팬텀을 이용한 초음파 치료효과 평가에 관한 연구)

  • Kim, Ju-Young;Jung, Tae-Woong;Shin, Kyoung-Won;Noh, Si-Cheol;Choi, Heung-Ho
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.3
    • /
    • pp.427-433
    • /
    • 2018
  • Because of the expectation of the non-invasive treatment effect, Various studies on the treatment of varicose veins using focused ultrasound are reported. In this study, the bio-tissue phantom and tissue equivalent phantom that can be applied to estimation of ultrasonic varicose veins treatment effect. Each phantom was evaluated for its usefulness by evaluating the acoustic characteristics and the shrinkage rate according to the ultrasonic irradiation. A multi-layer structure phantom with three layers of skin, fat, and muscle was constructed considering the structure of the tissue where the varicose veins occurred. The materials constituting each layer were made to have characteristics similar to human body. In addition, the multi-layered phantoms with blood vessel mimic tube, with bovine blood vessel, and with animal tissue were fabricated. The degree of shrinkage of blood vessel mimic material and vascular tissue according to ultrasonic irradiation was evaluated using B-mode image. As the results of this study, it was thought that the proposed phantom could be used effectively in the evaluation of ultrasonic varicose veins treatment. In addition, it is thought that these phantoms could be applied to the development of varicose vein treatment device using the focused ultrasound and the verification of the therapeutic effect.

Process Development for Production of Functional material from Green Coffee beans Using Innovative Extraction by Focused Ultrasound(INEFU). (그린커피빈으로부터 집속초음파추출을 이용한 기능성 물질 생산 공정 최적화)

  • Seo, Seung beom;Kim, Yu Mi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.93-93
    • /
    • 2018
  • 집속초음파 추출법(Innovative Extraction by Focused Ultrasound, INEFU)은 기존의 추출법에 비교하여 식물세포벽으로부터 기능성 성분을 낮은 온도에서 높은 추출 효율을 얻기 위한 추출공정으로 적용하기 위하여 연구되고 있다. 본 연구에서는 그린커피빈(COFFEA ARABICA SEED)에서 Chlorogenic acid, Caffein, Caffeic acid의 기능성 성분 추출을 위해 INEFU를 적용하여 추출 효율에 미치는 요인을 평가하였다. 추출 변수의 최적화를 위해 추출 온도 및 추출 시간을 요인으로 하여 순차적인 최적화를 진행하였다. 동일한 추출조건에서 저온추출(CEM)과 INEFU를 비교하였을 때 INEFU에서 Chlorogenic acid, Caffein이 각각 2.1 와 2.2배 증가함을 확인하였다. 또한 Caffeic acid는 저온추출(CEM)에서는 추출되지 않았으나, INEFU에서는 추출되는 것으로 확인하였다. 본 연구를 통해 INEFU가 기존의 추출 공정에 비해 기능성 성분 생산에 보다 효과적임을 확인하였다.

  • PDF

Process Development for Production of Functional material from Citrus Madurensis(Citrofortunella microcarpa) Using Innovative Extraction by Focused Ultrasound(INEFU). (깔라몬딘오렌지로부터 집속초음파추출을 이용한 기능성 물질 생산 공정 최적화)

  • Seo, Seung beom;Kim, Yu Mi
    • Proceedings of the Plant Resources Society of Korea Conference
    • /
    • 2018.10a
    • /
    • pp.94-94
    • /
    • 2018
  • 집속초음파 추줄법(Innovative Extraction by Focused Ultrasound, INEFU)은 기존의 추출법에 비교하여 식물세포벽으로부터 기능성 성분을 낮은 온도에서 높은 추출 효율을 얻기 위한 추출공정으로 적용하기 위하여 연구되고 있다. 본 연구에서는 깔라몬딘오렌지(깔라만시, Citrus Madurensis, Citrofortunella microcarpa)에서 Vitamin C와 Polyphenol의 기능성 성분 추출을 위해 INEFU를 적용하여 추출 효율에 미치는 요인을 평가하였다. 추출 변수의 최적화를 위해 추출 온도 및 추출 시간을 요인으로 하여 순차적인 최적화를 진행하였다. 동일한 추출조건에서 저온추출(CEM)과 INEFU를 비교하였을 때 INEFU에서 Vitamin C는 고순도로 26배 증가하여 추출되는 것을 확인하였다. 또한 Polyphenol는 저온추출(CEM)에서는 polyphenol이 극소량 추출되었으나, INEFU에서는 Feruric acid가 10.3배 증가하여 추출되는 것으로 확인하였다. 본 연구를 통해 INEFU가 기존의 추출 공정에 비해 기능성 성분 생산에 보다 효과적임을 확인하였다.

  • PDF