• Title/Summary/Keyword: 집계함수 테이블

Search Result 11, Processing Time 0.018 seconds

A New Method for Processing Queries in Data Warehouse Environment (데이터 웨어하우징 환경에서 질의 처리를 위한 새로운 기법)

  • 김윤호;김진호;감상욱
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.121-123
    • /
    • 2001
  • 대용량의 데이터가 저장되는 데이터 웨어하우징 환경에서는 조인이나 집계 함수와 같은 고비용의 연산의 효율적인 처리는 매우 중요하다. 본 논문에서는 집계 함수(aggregate function)와 조인이 모두 포함된 질의를 처리하는 새로운 기법을 제안한다. 제안하는 기법은 먼저 차원 테이블(dimension table)을 미리 그룹핑한 후, 비트맵 조인 인덱스(bitmap join index)를 이용하여 조인을 처리하는 방식을 사용한다. 이 결과, 사실 테이블만을 접근하여 집계 함수를 처리함으로써 기존 기법이 가지는 성능 저하의 문제점을 해결할 수 있다. 기존 기법과 제안하는 기법에 대한 비용 모델(cost model)을 정립하고, 이를 기반으로 시뮬레이션을 수행함으로써 제안된 기법의 우수성을 규명한다.

  • PDF

A Condition Processing System of Active Rules Using Analyzing Condition Predicates (조건 술어 분석을 이용한 능동규칙의 조건부 처리 시스템)

  • Lee, Gi-Uk;Kim, Tae-Sik
    • The KIPS Transactions:PartD
    • /
    • v.9D no.1
    • /
    • pp.21-30
    • /
    • 2002
  • The active database system introduces the active rules detecting specified state. As the condition evaluation of the active rules is performed every time an event occurs, the performance of the system has a great influence, depending on the conditions processing method. In this paper, we propose the conditions processing system with the preprocessor which determines the delta tree structure, constructs the classification tree, and generates the aggregate function table. Due to the characteristics of the active database through which the active rules can be comprehended beforehand, the preprocessor can be introduced. In this paper, the delta tree which can effectively process the join, selection operations, and the aggregate function is suggested, and it can enhance the condition evaluation performance. And we propose the classification tree which effectively processes the join operation and the aggregate function table processing the aggregate function which demands high cost. In this paper, the conditions processing system can be expected to enhance the performance of conditions processing in the active rules as the number of conditions comparison decreases because of the structure which is made in the preprocessor.

A Join Query with Aggregation functions Using Mapreduce (집계 함수를 포함하는 조인 질의의 맵리듀스를 사용한 효율적인 처리 기법)

  • Oh, So Hyeon;Lee, Ki Yong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.132-135
    • /
    • 2015
  • 맵리듀스(MapReduce)는 분산 환경에서의 빅데이터(Big Data), 즉 대용량 데이터를 처리하는 프로그래밍 모델이다. 대용량의 데이터를 분석하기 위해서 집계 함수(Aggregation function)로 데이터를 처리할 수 있다. 본 논문에서는 맵리듀스 환경을 기반으로 SQL 쿼리에서 집계 함수를 더 적은 비용으로 수행하며 효율적으로 처리할 수 있는 두 가지 전략을 제안한다. 두 가지 전략 중 더 높은 성능을 보이는 전략을 더 효율적인 처리 방법으로 판단한다. 첫 번째 전략은 두 테이블을 Join하여 집계 함수를 처리하는 방법이다. 두 번째 전략은 집계 함수를 처리하여 Join에 참여할 튜플의 수를 최소로 줄인 후 Join을 수행하고 다시 집계 함수를 처리하는 방법이다. 두 제안 방법을 비교하기 위하여 실험을 한 결과 두 번째 전략이 더 적은 비용이 드므로 더 효율적인 처리 방법인 것으로 보인다.

An Technique for the Active Rule Condition (능동규칙의 조건부 처리 기법)

  • 이기욱
    • Journal of the Korea Society of Computer and Information
    • /
    • v.3 no.4
    • /
    • pp.49-54
    • /
    • 1998
  • AS it takes a considerable time for database operations for processing the condition part of active rule, the operations have an important effect on the efficiency of active database system. The processing time of operations should be minimized in order to improve the efficiency of system. The previous works are limited to basic database operations and the partial aggregate functions. In this paper, the processing technique using the structuralization and the state table of relations is suggested. The processing time for basic database operations can be reduced with the structuralization of relations to classification tree and the introduction of deletion information table. With the introduction of binary search tree and relation state table, the aggregate function which has a big of processing cost can be processed effectively and the function of the active database system can be maximized.

  • PDF

Efficient Processin of Queries with Joints and Aggregate Functions in ROLAP Data Warehousing Environment (관계형 OLAP 데이터 웨어하우징 환경에서 조인과 집계함수를 포함하는 질의의 효율적인 처리)

  • Kim, Jin-Ho;Kim, Yun-Ho;Kim, Sang-Wook
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.39 no.5
    • /
    • pp.1-10
    • /
    • 2002
  • Efficient processing of expensive queries that include joins and/or aggregate functions is crucial in data warehousing environment since there reside enormous volume of data. In this paper, we propose a new method for processing of queries that have both of joins and aggregate functions. The proposed method first performs grouping of the dimension table and then processes join by using the bitmap join index. This makes only the fact table accessed for processing aggregate functions, and thus resolves the serious performance degradation of the existing method. For showing the superiority of the proposed method, we suggest the cost models for the proposed and existing ones, and perform extensive simulations based on the TPC-H benchmark.

Applying an Aggregate Function AVG to OLAP Cubes (OLAP 큐브에서의 집계함수 AVG의 적용)

  • Lee, Seung-Hyun;Lee, Duck-Sung;Choi, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.1
    • /
    • pp.217-228
    • /
    • 2009
  • Data analysis applications typically aggregate data across many dimensions looking for unusual patterns in data. Even though such applications are usually possible with standard structured query language (SQL) queries, the queries may become very complex. A complex query may result in many scans of the base table, leading to poor performance. Because online analytical processing (OLAP) queries are usually complex, it is desired to define a new operator for aggregation, called the data cube or simply cube. Data cube supports OLAP tasks like aggregation and sub-totals. Many aggregate functions can be used to construct a data cube. Those functions can be classified into three categories, the distributive, the algebraic, and the holistic. It has been thought that the distributive functions such as SUM, COUNT, MAX, and MIN can be used to construct a data cube, and also the algebraic function such as AVG can be used if the function is replaced to an intermediate function. It is believed that even though AVG is not distributive, but the intermediate function (SUM, COUNT) is distributive, and AVG can certainly be computed from (SUM, COUNT). In this paper, however, it is found that the intermediate function (SUM COUNT) cannot be applied to OLAP cubes, and consequently the function leads to erroneous conclusions and decisions. The objective of this study is to identify some problems in applying aggregate function AVG to OLAP cubes, and to design a process for solving these problems.

Distributed Processing System for Aggregate/Analytical Functions on CUBRID Shard Distributed Databases (큐브리드 샤드 분산 데이터베이스에서 집계/분석 함수의 분산 처리 시스템 개발)

  • Won, Jiseop;Kang, Suk;Jo, Sunhwa;Kim, Jinho
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.8
    • /
    • pp.537-542
    • /
    • 2015
  • Database Shard is a technique that can be queried and stored by dividing one logical table into multiple databases horizontally. In order to analyze the shard data with aggregate or analysis functions, a process is required that integrates partial results on each shard database. In this paper, we introduce the design and implementation of a distributed processing system for aggregation and analysis on the CUBRID Shard distributed database, which is an open source database management system. The implemented system can accelerate the analysis onto multiple shards of partitioned tables; it shows efficient aggregation on shard distributed databases compared to stand-alone databases.

Design of an Inference Control Process in OLAP Data Cubes (OLAP 데이터 큐브에서의 추론통제 프로세스 설계)

  • Lee, Duck-Sung;Choi, In-Soo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.14 no.5
    • /
    • pp.183-193
    • /
    • 2009
  • Both On-Line Analytical Processing (OLAF) data cubes and Statistical Databases (SDBs) deal with multidimensional data sets. and both are concerned with statistical summarizations over the dimensions of the data sets. However, there is a distinction between the two that can be made. While SDBs are usually derived from other base data, OLAF data cubes often represent directly the base data. In other word, the base data of SDBs are the macro-data, whereas the core cubiod data in OLAF data cubes are the micro-data. The base table in OLAF is used to populate the data cube with values of the measure attribute, and each record in the base tables is used to populate a cell of the core cuboid. The fact that OLAF data cubes mostly represent the micro-data may make some records be absent in the base table. Some cells of the core cuboid remain empty, if corresponding records are absent in the base table. Wang and others proposed a method for securing OLAF data cubes against privacy breaches. They assert that the proposed method does not depend on specific types of aggregation functions. In this paper, however, it is found that their assertion on aggregate functions is wrong whenever any cell of the core cuboid remains empty. The objective of this study is to design an inference control process in OLAF data cubes which rectifying Wang's error.

Implementing User Interface of Looms Management with Spatial Aggregate Query Functions (공간적 집계 질의 기능을 가진 직기 관리 사용자 인터페이스의 구현)

  • Jeon, Il-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.1
    • /
    • pp.37-47
    • /
    • 2003
  • In this paper, a component was designed for a loom in a window, and then a user interface was implemented to be able to connect database and to process various queries. The implemented system has aggregate query processing functions for the loom components existing in the selected area by the mouse and it also supports high level query processing functions represented with chart and pivot table; we can use it as a decision support system. The proposed system can detect temporal or persistent problems in the looms. Therefore, it can be used to raise the productivity and to reduce the cost in textile companies by coping with the situation properly.

  • PDF

Implementing the User Interface of Looms Management System with Spatial Aggregate Query Functions (공간 집계 질의 기능을 가진 직기 관리 시스템의 구현)

  • 전일수;부기동
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2002.11a
    • /
    • pp.512-519
    • /
    • 2002
  • In this paper, we implemented a loom component to be placed in a window and a looms management system which is able to connect database and to process various queries. The implemented system has aggregate query processing functions for the loom components existing in the selected area by the mouse and it also has high level query processing functions represented with chart and pivot table; it can be used as a decision support system. The proposed system can detect temporal or persistent problems of the Inn. Therefore, it can be used to raise the productivity and to reduce the cost in textile companies by coping with the situation properly.

  • PDF