• Title/Summary/Keyword: 질의언어

Search Result 616, Processing Time 0.022 seconds

Natural question generation based on consistency between generated questions and answers (생성된 질의응답 간 일관성을 이용한 자연어 질의 생성)

  • Jaehong Lee;Hwiyeol Jo;Sookyo In;Sungju Kim;Kiyoon Moon;Taehong Min;Kyungduk Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2022.10a
    • /
    • pp.109-114
    • /
    • 2022
  • 질의 생성 모델은 스마트 스피커, 챗봇, QA 시스템, 기계 독해 등 다양한 서비스에 사용되고 있다. 모델을 다양한 서비스에 잘 적용하기 위해서는 사용자들의 실제 질의 특성을 반영한 자연스러운 질의를 만드는 것이 중요하다. 본 논문에서는 사용자 질의 특성을 반영한 간결하고 자연스러운 질의 자동 생성 모델을 소개한다. 제안 모델은 topic 키워드를 통해 모델에게 생성 자유도를 주었으며, 키워드형 질의→자연어 질의→응답으로 연결되는 chain-of-thought 형태의 다중 출력 구조를 통해 인과관계를 고려한 결과를 만들도록 했다. 최종적으로 MRC 필터링과 일관성 필터링을 통해 고품질 질의를 선별했다. 베이스라인 모델과 비교해 제안 모델은 질의의 유효성을 크게 높일 수 있었다.

  • PDF

A Study on the Connecting Method of Query and Legal Cases Using Doc2Vec Document Embedding (Doc2Vec 문서 임베딩을 이용한 질의문과 판례 자동 연결 방안 연구)

  • Kang, Ye-Jee;Kang, Hye-Rin;Park, Seo-Yoon;Jang, Yeon-Ji;Kim, Han-Saem
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.76-81
    • /
    • 2020
  • 법률 전문 지식이 없는 사람들이 법률 정보 검색을 성공적으로 하기 위해서는 일반 용어를 검색하더라도 전문 용어가 사용된 법령정보가 검색되어야 한다. 하지만 현 판례 검색 시스템은 사용자 선호도 검색이 불가능하며, 일반 용어를 사용하여 검색하면 사용자가 원하는 전문 자료를 도출하는 데 어려움이 있다. 이에 본 논문에서는 일반용어가 사용된 질의문과 전문용어가 사용된 판례를 자동으로 연결해 주고자 하였다. 질의문과 연관된 판례를 자동으로 연결해 주기 위해 전문용어가 사용된 전문가 답변을 바탕으로 문서분류에 높은 성능을 보이는 Doc2Vec을 이용한다. Doc2Vec 문서 임베딩 기법을 이용하여 전문용어가 사용된 전문가 답변과 유사한 답변을 제안하여 비슷한 주제의 답변들끼리 분류하였다. 또한 전문가 답변과 유사도가 높은 판례를 제안하여 질의문에 해당하는 판례를 자동으로 연결하였다.

  • PDF

Natural Query Translation System for Database Retrieval (데이타베이스 검색을 위한 자연 질의어 변환 시스템)

  • Shin, Nu-Mi;Choi, Jun-Hyeog;Lee, Jung-Hyun
    • Annual Conference on Human and Language Technology
    • /
    • 1993.10a
    • /
    • pp.79-89
    • /
    • 1993
  • 본 논문에서는 대형 데이타베이스에서의 정보검색을 위한 자연언어 인터페이스 시스템을 구현하기 위한 방법을 제안한다. 질의문의 특성을 고찰하고 이를 일반적인 문장의 관점에서 수용하여 구문분석시에 반영한다. 구문분석 결과는 다음의 후처리 절차를 통해 정형 질의어인 SQL로 변환된다. 명사의 의미소성과 도메인의 어휘적 형태를 이용하여 질의문 내에 명시적으로 나타나지 않은 정보를 추출한다. 또한 질의문 내의 애트리뷰트, 릴레이션, 상수의 관련성을 규명한다. 이 두 절차를 통해 기존의 질의어 변환 시스템에서 지식베이스화하여 사용했던 자료들을 구축할 필요가 없어지므로 데이타베이스의 변경, 삽입, 삭제에 의한 영향을 받지 않으며, 자료구조 생성에 따른 부담을 없앨 수 있다.

  • PDF

Query Expansion Using Thesaurus for Korean to Chinese Cross- Language Text Retrieval (한.중 교차언어 검색에서 시소러스를 이용한 질의 확장)

  • Jin, Feng;Kang, In-Su;Lee, Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.538-540
    • /
    • 2003
  • 본 논문은 한.중 교차언어 검색을 위한 효과적인 질의 확장에 대해 기술하고 있다. 한.중 교차언어 검색은 한국어 질의로 중국어 문서를 검색하는 것이고 본 논문에서는 대역어 사전을 이용하여 한국어 질의를 중국어 질의로 변환하는 방식을 사용한다. 질의 확장을 위한 방법으로 중국어 시소러스인“동의사사림”을 사용하였다. 그리고 동의어들과 주변 단어간의 상호 정보를 비교함으로서 재현률과 정확률을 높였다. 실험을 통하여 검증한 결과 사전만 사용하여 변환하는 방법에 비하여 검색 성능이 향상되었다.

  • PDF

Natural Langugae Inference as Re-ranking for Multiple Question Answering (질의응답 결과 재순위화를 위한 자연어 추론 모델)

  • Lee, Jihyung;Lee, Geunbae
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.405-409
    • /
    • 2021
  • 자연어 추론은 전제가 주어졌을때 특정 가설이 전제에 기반해 합당한지 검증하는 자연어 처리의 하위 과제이다. 우리는 질의응답 시스템이 도출한 정답 및 근거 문서를 자연어 추론 모델로 검증할 수 있다는 점에 착안하여, HotpotQA 질의응답 데이터셋을 자연어 추론 데이터 형식으로 변환한뒤 자연어 추론 모델을 학습하여 여러 질의응답 시스템이 생성한 결과물을 재순위화하고자 하였다. 그 결과로, 자연어 추론 모델에 의해 재순위화된 결과물은 기존 단일 질의응답 시스템의 결과물보다 대체로 향상된 성능을 보여주었다.

  • PDF

Deep Prompt Tuning based Machine Comprehension on Korean Question Answering (Deep Prompt Tuning 기반 한국어 질의응답 기계 독해)

  • Juhyeong Kim;Sang-Woo Kang
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.269-274
    • /
    • 2023
  • 질의응답 (Question Answering)은 주어진 질문을 이해하여 그에 맞는 답변을 생성하는 자연어 처리 분야의 핵심적인 기계 독해 작업이다. 현재 대다수의 자연어 이해 작업은 사전학습 언어 모델에 미세 조정 (finetuning)하는 방식으로 학습되고, 질의응답 역시 이러한 방법으로 진행된다. 하지만 미세 조정을 통한 전이학습은 사전학습 모델의 크기가 커질수록 전이학습이 잘 이루어지지 않는다는 단점이 있다. 게다가 많은 양의 파라미터를 갱신한 후 새로운 가중치들을 저장하여야 한다는 용량의 부담이 존재한다. 본 연구는 최근 대두되는 deep prompt tuning 방법론을 한국어 추출형 질의응답에 적용하여, 미세 조정에 비해 학습시간을 단축시키고 적은 양의 파라미터를 활용하여 성능을 개선했다. 또한 한국어 추출형 질의응답에 최적의 prompt 길이를 최적화하였으며 오류 분석을 통한 정성적인 평가로 deep prompt tuning이 모델 예측에 미치는 영향을 조사하였다.

  • PDF

Improving Table Question Answering Using Prompt (프롬프트를 이용한 표 질의응답의 성능향상)

  • Jeongyeon Park;Donghyeok Lee;Hyeong Jin Shin;Kyungbeen Cho;Jae Sung Lee
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.395-398
    • /
    • 2023
  • 표 질의응답이란, 주어진 표에서 질의문에 대한 답변을 자동으로 추출하거나 생성하는 기술을 말한다. 최근 언어모델을 사용한 연구들은 정답을 유도할 수 있는 명령문인 프롬프트를 활용하여 더 높은 성능을 보이고 있다. 본 연구에서는 표 질의응답의 성능을 향상시키기 위해, 프롬프트를 효과적으로 사용할 수 있는 모델을 제안한다. 이와 함께, 다양한 형태의 프롬프트를 사용하여 모델을 평가한다. 실험 결과, 기본 모델에 단순 질의문만 입력으로 사용했을 때의 성능 F1 67.5%에 비해, 다양한 프롬프트를 입력으로 사용한 경우 1.6%p 향상된 F1 69.1%을 보였다. 또한, 다양한 프롬프트와 함께 제안 모델을 사용했을 때에는 기본 모델보다 2.2%p 높은 F1 69.7%을 달성했다.

  • PDF

A Method for Precision Improvement Based on Core Query Clusters and Term Proximity (핵심질의 클러스터와 단어 근접도를 이용한 문서 검색 정확률 향상 기법)

  • Jang, Kye-Hun;Lee, Kyung-Soon
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.399-404
    • /
    • 2010
  • In this paper, we propose a method for precision improvement based on core clusters and term proximity. The method is composed by three steps. The initial retrieval documents are clustered based on query term combination, which occurred in the document. Core clusters are selected by using proximity between query terms. Then, the documents in core clusters are reranked based on context information of query. On TREC AP test collection, experimental results in precision at the top documents(P@100) show that the proposed method improved 11.2% over the language model.

KorQATeC2.0: Construction of Test Collection for Evaluation of Question Answering System (KorQATeC2.0: 질의/응답 시스템의 성능 평가를 위한 평가집합 구축)

  • Kim, Jae-Ho;Lee, Kyung-Soon;Oh, Jong-Hoon;Chang, Du-Seong;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.397-404
    • /
    • 2001
  • 본 논문에서는 질의/응답 시스템의 평가를 위해 구축된 평가집합 (Korean Question Answering Test Collection 2.0: KorQATeC2.0)에 대하여 기술한다. KorQATeC2.0은 총 120개의 질의와 207,067개의 문서로 구성되어 있으며, 120개의 질의는 질의에 대한 정답을 제시하는 방식에 따라 기본 과제 질의, 나열 과제 질의, 문맥 과제 질의, 요약 과제 질의로 나누어진다. 또한 KorQATeCl.0과는 달리 여러 문서를 참조하여 정답을 구성하는 질의와 문서집합에 정답이 존재하지 않는 질의를 포함시킴으로써 질의/응답 시스템의 평가를 다양하게 할 수 있도록 하였다. 본 논문에서 기술하는 평가집합은 질의/응답 시스템의 객관적 평가를 가능하게 한다는 점에서 그 의의가 있다.

  • PDF

Construction of Test Collection for Evaluation of Question Answering System (질의응답시스템의 성능 평가를 위한 테스트컬렉션 구축)

  • Lee, Kyung-Soon;Kim, Jae-Ho;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.190-197
    • /
    • 2000
  • 본 연구에서는 사용자의 질의에 대해 대답을 제시하는 질의응답시스템의 평가를 위한 테스트컬렉션을 구축하였다. 질의응답시스템 평가를 위한 테스트컬렉션은 207,067개의 문서, 90개의 질의, 각 질의에 대한 적합성 판정 집합으로 구성되어 있다. 문서집합은 신문기사로 SGML 형식으로 가공되었고, 질의는 다양한 유형의 질의와 변형질의를 포함한다. 적합성 판정 집합은 각 질의에 대해서 문서에 대답을 포함하는지의 여부에 따라 적합/부적합으로 판정하였고, 적합한 문서에 대해서는 대답을 표시하였다. 본 연구를 통해 구축된 질의응답시스템 평가를 위한 테스트컬렉션은 질의응답시스템의 객관적인 신뢰성 평가를 위한 기반을 마련하였다.

  • PDF