• Title/Summary/Keyword: 질소 회수

Search Result 245, Processing Time 0.027 seconds

Particle Size Effects of Devarda's Alloy on the Recovery of Nirate N Determined by the Steam Distillation Method (질산태 질소 정량을 위한 환원 증류법에서 Devarda's Alloy의 입자크기 및 함량이 미치는 영향)

  • Jung, Seok-Ho;Kwon, Hyun-Jae;Chung, Doug-Young;Han, Gwang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.387-393
    • /
    • 2011
  • We analyzed the particle size distributions of three commercially available Devarda's alloy (DA) products, tested the nitrate recoveries of each particle size category, and examined the amounts of DA required for 100% recovery by varying $NO_3$-N concentration from 0.5 to 10 mg. We observed that use of DA coarser than 200 mesh resulted in poor analytical recovery (<80%). While the tested alloys were considered to be fine enough (>90% of the particles were less than 100 mesh), the recovery dramatically declined from 80% to 10% in a high concentration range (4 to 10 mg N). Satisfactory recovery was obtained by increasing the amount of finer DA (less than 300 or 450 mesh). However, there was no quantitative relationship between the amount of fine DA and nitrate recovered. Generally, the amount of nitrate reduced per unit DA decreased as the recovery efficiency declined. These results suggest that a sufficient amount of DA must be determined based on particle size distribution, and that treatment of at least two levels of DA and comparison of the subsequent change in nitrate recovery is required for soils containing high levels of nitrate. In addition, further studies are encouraged to account for the observed stoichiometric dis-equivalence of recovered nitrate N per unit mass of DA.

Effects of Nitrogen Recovery of Satuma Mandarins with Different Nitrogen Rates and Application Methods (질소시비량과 시비방법에 따른 온주밀감의 질소회수율)

  • Kang, Young-Kil;U, Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.4
    • /
    • pp.342-349
    • /
    • 1998
  • In order to evaluate the effects of nitrogen (N) rate and application method on the recovery of N fertilizer applied in spring and summer by Satsuma mandarins (cv. Miyakawa Wase), N as urea was surface-applied at the rates of 50 (applied with 20 mm water; 50% N application) and 100% (three treatments; applied as solid, with 5 or 20 mm water) of the recommended rate ($150kg\;ha^{-1}\;yr^{-1}$) on 25 March and 12 June with an application ratio of 50 and 20%. The labeled N was applied only once in spring or summer. There were no differences among the four treatments in fruit yield, fruit quality except acid content of juice, and N content of leaves. The recovery of fertilizer N applied in spring by a tree ranged from 7.8 to 8.3% and that of N applied in summer ranged from 11.3 to 14.2% at the three recommended N rates and was 18.0% for the 50% N application. The recovery of fertilizer N applied in spring in the upper 40 cm of soil ranged from 32.1 to 37.7% at the three recommended N rates and was 55.8% at the 50% N application. For N applied in summer, it was 69.8% for surface application of the recommended N rate and ranged from 80.7 to 84.4% for the three N applications with water. The total (tree+soil) recovery of N fertilizer applied in spring was highest (64.1%) for the 50% N application and ranged from 40.3 to 45.5% for the three recommended N rates. The total recovery of N fertilizer applied in summer was also highest (99.4%) for the 50% N application and tended to be higher for the application of N with water than surface application and to increase with increasing irrigation amount of N application.

  • PDF

Determination of Nitrogen Balance of Agricultural Land among OECD Nutrient Balance Indexes (OCED 농업양분지표중 질소 균형지표 설정)

  • Lee, Chun-Soo;Kim, Pil-Joo;Park, Yang-Ho;Kwak, Han-Kang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.5
    • /
    • pp.347-355
    • /
    • 2000
  • To determine nitrogen balance (Input-Output) of Korea that was asked by Joint Working Party of the Committee for Agriculture and the Environment Policy Committee, OECD, nitrogen input and output were separately investigated as followings: nitrogen input included the amounts of chemical fertilizer consumption, cattle manure production, and biological nitrogen fixation in the national scale, and nitrogen output summed amounts withdrawn by crop and pasture harvesting, and crop residue removal, and lost by denitrification. In 1997, nitrogen balance of Korea was $158kg\;ha^{-1}$ and $211kg\;ha^{-1}$ on including and excluding denitrification loss, respectively. N balance excluded N loss by denitrification and N withdrawal by crop residues on nitrogen output was $250kg\;ha^{-1}$, which OECD asked to except two items from N balance determination because participants were not enough their data. Nitrogen balance was increased to 1.7~2.3 times in 1997 compared with 70 and $162kg\;ha^{-1}$ in 1985, which calculated on the condition of including denitrification and excluding denitrification and removal of crop residues in nitrogen output, respectively. This increase was caused mainly by increasing livestock manure production and chemical fertilizer consumption together with agricultural land area decrease. Nitrogen input was composed with 59% of chemical fertilizer. 42% of cattle manure and 5% of others in 1997, and output was with 73% of crop production, 23% of crop residue withdrawal and 4% of pasture production. Average nitrogen balance excluded N loss by denitrification and N withdrawals by crop residues in 1995~1997 calculated by OECD was $253kg\;ha^{-1}$, which was the second highest rank in OECD participants following $262kg\;ha^{-1}$ of Netherlands. Japanese N balance that has similar farming system with us was $135kg\;ha^{-1}$.

  • PDF

Nitrogen Recovery and Application Method in a Satsuma Mandarins Orchard (온주밀감 과원 토양에서 질소에 대한 시비방법과 시비수준에 따른 회수율)

  • Kang, Young-Kil;U, Zang-Kual;Kang, Bong-Kyoon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.31 no.2
    • /
    • pp.143-150
    • /
    • 1998
  • In order to evaluate the nitrogen (N) balance, from the different application methods and levels of $^{15}N$ applied to a satsuma mandarin orchard soils in spring, we surface-applied N as urea at the rates of 50 (water-dissolved), 100 (solid and water-dissolved) and 150% (solid) of the recommended rate ($180kg\;ha^{-1}$) in spring (lebeled N), summer (nonlebeled N) with application ratio of 5:2:3. Fruit yield and quality were not significantly affected by any treatment. Nitrogen contents of spring flush leaves in late August were 3.0% regardless of the treatments. The N recovery by parts of tree itself was in the order of leaves, fruits, roots, stems, and the highest recovery per tree was 22.3% in the 50% recommended water-dissolved surface broadcast while there were not much differences for N recovery (11.9 to 13.6%) among the other three treatments. Total N content in top 30cm of soils was 0.47% regardless of the treatments, but N proportion and total residual N from the fertilizer applied increased with increasing N rate while the N recovery in soils decreased. For the recommended N rate, N proportion and the residual N from the fertilizer applied were greater in the water-dissolved surface broadcast than those in soils surface broadcast. The highest total (tree + soils) N recovery was 70.9% in the 50% recommended water-dissolved surface broadcast, but tended to decrease to 52.2, 46.6, and 43.2% for the recommended water-dissolved surface broadcast, 100 and 150% of the recommended solid surface broadcast, respectively.

  • PDF

Recovery of Ammonia Nitrogen using Gas-permeable Membranes (기체투과막을 이용한 암모니아성 질소 회수방안)

  • Lee, Sang-hun;Chae, Sang Yeop
    • Membrane Journal
    • /
    • v.32 no.3
    • /
    • pp.191-197
    • /
    • 2022
  • Ammonia nitrogen can be effectively recovered from livestock manure waste, etc. by using the gas permeable membrane technology. In this case, ammonia gas in the waste passes through the pores in one-side of membrane, impregnated in waste, and then reach the opposite side of the membrane. The permeated ammonia gas molecules are captured and recovered by acid (such as sulfuric acid) in the solution existing on the opposite side of the membrane. In order to improve ammonia nitrogen removals in the inlet part, high pH should be maintained in the feed waste including ammonia nitrogen to recover, which requires the cost of the chemical. To resolve this issue, previous studies tested various methods, for example, utilization of cheap calcium hydroxide or aeration together with inhibition of unwanted nitrification. The gas permeable membranes used for the recovery of ammonia nitrogen may be characterized, not only by proper heat and chemical resistance, but also by hydrophobicity, allowing selective ammonia gas permeation through the hydrophobic membrane pores. Future research should consider the relevant pilot or upscale processes using on-site wastes with various properties, and identify the optimal design/operation conditions as well as economic feasibility improvement plans.

A Continuous Process for Phosphorus Recovery from Swine Slurry with Forming Struvite (양돈액비에서 Struvite 형성으로 연속적 인의 회수기술)

  • Oh I.H.;Lee J.H.;Choi B.H.;Burns R.T.
    • Journal of Animal Environmental Science
    • /
    • v.12 no.2
    • /
    • pp.95-100
    • /
    • 2006
  • This study was carried out to develop a continuous process for recovering phosphorus in swine slurry. Magnesium chloride ($MgCl_2$) was used in the test as a magnesium source and the pH was regulated by adding NaOH and aerating. The results showed that the recovery rate of soluble phosphorus (SP) has increased with the molar ratios increased. In case of pH regulated with NaOH, the recovery rates of SP with molar ratio of 1:1.5 were over 95% from both farms. The removal of ammonia-nitrogen was at levels of $4{\sim}9%$. With aeration treatment, the SP recovery rate was 66% and the removal rate of ammonia-nitrogen was 15%. The treatment of NaOH to increase pH showed better SP recovery efficiency than the aeation treatment. However, in case of ammonia-nitrogen removal, the treatment of aeration showed better results than the NaOH treatment.

  • PDF

Nitrogen-Oxygen Separation Characteristics by Polyimide Membrane System for Controlled Atmosphere Storage (CA저장을 위한 폴리이미드 막 시스템의 질소-산소 분리특성)

  • 이호원;현명택;고정삼
    • Food Science and Preservation
    • /
    • v.5 no.3
    • /
    • pp.239-246
    • /
    • 1998
  • Polyimide membrane system was designed for manufacturing nitrogen-enriched gas, and basic technical data was suggested for appling this system to controlled atmosphere storage. The permeability characteristics of pure oxygen and nitrogen could be explained by dual-mode sorption model. There was substantial decrease in the permeation rates of oxygen, which is the more permeable gas, through the polyimide membrane due to the presence of nitrogen in comparison with pure oxygen. However, the permeation rates of nitrogen was increased by the presence of oxygen. The ideal separation factor was in the range of 5 to 6 in the range of temperature and pressure difference studied, and the separation factor of air was lower than the ideal separation factor. The increase of ideal separation factor with increasing temperature is due to the fact that the activation energy for oxygen is larger than that for nitrogen. Nitrogen concentration decreased rapidly with increasing product recovery, and it was found that this is a major operating factor to obtain nitrogen concentration required for controlled atmosphere storage. A relation equation, by which nitrogen concentration in storehouse can be predicted, was suggested under the establishment of a hypothetical model for controlled atmosphere storage process using polyimide membrane system.

  • PDF

Effect of Soil Mineral Nutrients on Nitrogen Uptake of three Crops in Australian Brigalow Soil (호주(濠洲)의 Brigalow 토양(土壤)에서 무기성분(無機成分)이 세가지 작물(作物)의 질소흡수(窒素吸收)에 미치는 영향(影響))

  • Ahn, Yoon-Soo;Choi, Jung;Catchpoole, V.R.;Myers, R.J.K.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.3
    • /
    • pp.201-208
    • /
    • 1994
  • In order to study the effect of exsisting soil nutritional elements on the nitrogen uptake of sunflower, sorghum and black gram, pot experiment was carried out by using soils sampled from three different depths(0~20, 45~65, 90~110cm) of Brigalow soil in Australia. The results obtained were as follows : Dry matter and nitrogen uptake of corps were increased in the soil with higher nitrogen content. Chlorine uptakes of sunflower and sorghum were increased in the soil with higher nitrogen and lower chlorine contents, but that of black gram was done in the soil with higher contents of both elements. Ratios of nitrogen derived from applied fertilizer of three corps and fixed nitrogen of black gram were relatively low in the soil with higher content of soil nitrogen, but those derived from soil nitrogen were reverse. Recovery rates of applied nitrogen were relatively increased with higher cation uptakes of crops. Chlorine uptakes of sunflower and sorghum were positively correlated with each recovery of nitrogen, but that of black gram didn't show the trend. Recovery rate of applied nitrogen for black gram had significantly negative correlation with increase of soil chloride content.

  • PDF