• Title/Summary/Keyword: 질소 원

Search Result 1,775, Processing Time 0.031 seconds

Development of Leaf Protein Concentrates II. Extraction of Leaf Protein Concentrates of Some Plants Growing in Korea (잎 단백질(蛋白質)(Leaf Protein Concentrates)의 개발(開發)에 관한 연구(硏究) II. 한국산(韓國産) 각종 식물(植物)로 부터의 잎 단백질(蛋白質)의 추출(抽出))

  • Choe, Sang;Kim, Geon-Chee;Chun, Myung-Hi;Kim, Kil-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.17-25
    • /
    • 1970
  • Juice were extracted from fresh leaves of 70 species of plants growing in Korea by mincing and pressing the resulting pulp through a cotton cloth. Leaf protein concentrates could be prepared from many species of land and water plants that are at present economically unimportant. The choice of plants is of considerable important. Total-N, protein-N and pH determinations were made on the extracts, and total-N remaining in the fibre were calculated. Leaf protein concentrates were precipitated from the extracts at $75{\sim}80^{\circ}C$, and analysed total-N as protein-N of products. The present paper deals with the calculated yields of leaf protein concentrates from various plants, relations between yield of leaf protein concentrates and total-N of leaves, or pH of extracts, and the amino acid compositions of leaf protein concentrates. Results are summarized as follows. 1. Spinach and radish were the best sources of easily extractable, but good results were also obtained with indian mustard, kail, chenopod, red bean, cucumber, squash, houndberry, white flowered gourd, potato, Humulus japonicus, arrowroot and soybean as a good resources for the production of leaf protein concentrates. 2. In general, the greater the protein content of leaves the greater the yield of leaf protein concentrates. However, there are some plants difficult to make a adequate protein extraction by a simple mechanical process. 3. It was to be expected that leaf protein concentrates would be more extractable with the higher pH of extracts. There were a poor yield of the leaf protein concentrate in the pH values lower than 5.50 of the first extracts. 4. Protein content of the leaf protein concentrate shows marked differences, depending on species and season. It ranged between 29 to 80% of protein contents. However, the majority of plants yielded products containing more than 50% of protein. Products containing more than 75% of protein were obtained from two species of radish and indian mustard. Cabbage and Digitaria sanguinalis cilialis (summer) made products containing 29 to 32% of protein. 5. The amino acid composition of leaf protein concentrates was not greatly altered by species of plants. On an amino acid compositional basis, the leaf protein concentrate has a favorable balance of essential and non-essential amino acids, the only exception being methionine, which was usually low in all cases.

  • PDF

Change of Nutrition Loss of Long-term Application with Different Organic Material Sources in Upland Soil (유기물원이 다른 퇴비연용 밭토양에서 양분유실량 변화)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Kim, Jae-Duk;Han, Sang-Su;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.432-445
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of nutrition loss in upland soils. Field experiments were conducted in the loam and sandy loam soils, while the clay loam and sandy loam soils were used for laboratory experiments. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The loss of nutrients in the form of cation and anion by run-off water increased with the increase of compost application rate. Compared with bare soils, maize cultivation decreased the nutrient loss by run-off from soils by 43% in anionic form and 32% in cationic form. Amount of cation loss were ordered $K^+$ > $Ca^{2+}$ > $Na^+$ > $Mg^{2+}$ > $NH_4{^+} $ and that of anion loss were ordered $SO_4{^{2-}}$ > $NO_3{^-}$ > $Cl^-$ > $PO_4{^{3-}}$. Nutrient loss of sand loam soil in the cation and anion by percolation water increased 1.7 times compared with loam soil. $NO_3{^-}-N$ contents in percolated water were high at the initial stage after compost application, and the amounts were higher in sandy loam soil than loam soil. The maize cultivation also decreased the $NO_3{^-}-N$ contents in percolated water by 82% in loam soil, and 58% in sand loam soil. Soil pH of composts determined by laboratory incubation test increased pH 6.1~6.8 application with poultry and cow manure compost but application with human excrement sludge decreased pH 4.5~4.7. Soil EC were increased initially composts application and decreased up to 2 weeks, thereafter kept a certain level. Nitrogen mineralization rates of composts determined by laboratory incubation test at $25^{\circ}C$ were 39~76% in sandy loam soil, and 16~48% in clay loam soil.

  • PDF

The Effect of Long-term Application of Different Organic Material Sources on Chemical Properties of Upland Soil (유기물원이 다른 퇴비연용이 밭토양의 화학성 변화에 미치는 영향)

  • Kim, Jong-Gu;Lee, Kyeong-Bo;Lee, Sang-Bok;Lee, Deog-Bae;Kim, Seong-Jo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.416-431
    • /
    • 2000
  • The objective of this study was to determine the effects of various kinds of composts on the change of soil chemical properties in upland soils. Field experiments were conducted in the loam and sandy loam soils. Various kinds of composts such as poultry manure compost(PMC), cow manure compost(CMC), human excrement sludge(HES), and food industrial sludge compost(FISC) were applied annually at rates of 0, 40, and $80Mg\;ha^{-1}$ to soils grown with soybean and maize plants for 4 years during 1994 to 1997. The results of this study were as follows : The continuous application of human excrement sludge decreased soil pH up to 4.4~5.0, while other compost treatments increased soil pH compared with control plot. The EC increased initially and showed their maximum values at 20days after compost application, and then decreased up to 40 days, thereafter kept a certain level. The available phosphorous accumulated at 0~20cm depth in loam soil, and 0~50cm in sandy loam soil. Annual accumulation rates were 17% higher in sandy loam soil than loam soil. The more compost application rates and times, the higher base saturation percentage increased in upland soils. Four year's application at a rate of $80Mg\;ha^{-1}$ per year increased the base saturation percentage to 87~97% compared with 45% at control plot in the loam soil. While in sandy loam soil only three year's application of same rate increased the base saturation percentage to 81~92% compared with 30.4% at control plot. The average annual increasing rate of base saturation percentage at the same application rates of composts were higher in sandy loam soil by 2.0~3.7 times than in loam soil. The application of compost increased the exchangeable Ca, Mg, and K contents of soils by 2, 2~3, and 3~5 times, respectively, compared with the control. The contents of exchangeable cations were high in surface soil, and decreased with increase of soil depths. In the case of heavy metal content, there were no difference at the application of PMC and CMC but Ni, Fe, Zn, Cu was increased a little when the HES applied, and Ni and Cr was increased application with FISC.

  • PDF

Variations in Ammonium Removal Rate with Tidal State in the Macrotidal Han River Estuary: Potential Role of Nitrification (한강기수역에서의 암모늄 제거율 변화 및 질산화의 잠재적 역할)

  • Hyun, Jung-Ho;Chung, Kyung-Ho;Park, Yong-Chul;Choi, Joong-Ki
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 1999
  • In order to understand the importance of tidal action and $NH_4{^+}$ -nitrification in the removal of dissolved oxygen (DO) and $NH_4{^+}$, concentrations of DO, $NH_4{^+}$, $NO_2{^-}$ and $NO_3{^-}$ were measured with time for water samples collected at different tidal state in the eutrophic macrotidal Han River estuary. Field measurements indicated that most environmental parameters, except for the water temperature and DO concentration, were tightly controlled by the eutrophic freshwater runoff and large-scale tidal action. Dark incubation of the water sample at $25^{\circ}C$ showed that the removal rates of DO and $NH_4{^+}$ in high tide sample were 2.76 ${\mu}M\;O_2\;d^{-1}$ and 1.76 ${\mu}M\;N\;d^{-1}$ respectively, and increased to 5.66 ${\mu}M\;O_2\;d^{-1}$ and 3.36 ${\mu}M\;N\;d^{-1}$ respectively, in low tide sample. These changes indicated that microbial degradation and uptake of organic matter and inorganic nutrients were more active during low tide. $NH_4{^+}$-nitrification responsible for total DO removal in low tide (23.81%) and $NH_4{^+}$ turnover rates due to $NH_4{^+}$-nitrification in low tide (0.18 $d^{-1}$) were approximately 3.7 times and 3 times, respectively, higher than those in high tide. These results indicated that $NH_4{^+}$ -nitrifying bacteria introduced into the Han River estuary during low tide played a significant role in the removal of DO and $NH_4{^+}$. The decreasing removal rates in DO and $NH_4{^+}$ with the increasing tidal level seemed to be associated with the salinity impact on the halophobic freshwater $NH_4{^+}$-nitrifying bacteria. The results implied that anthropogenic $NH_4{^+}$ sources should be treated prior to the freshwater runoff into the estuary for the effective control of $NH_4{^+}$ in the Han River estuary. These results also suggest that parallel ecological studies on the chemoautotrophic nitrifying bacteria are essential for the elucidation of nitrogen cycles in the eutrophic Han River estuary.

  • PDF

Changes in Quality of Citron Juice by Storage and Extraction Conditions (유자과즙의 저장 및 착즙조건에 따른 품질변화)

  • Park, Kee-Jai;Jung, Sung-Won;Kim, Jong-Hoon;Jeong, Jin-Woong
    • Applied Biological Chemistry
    • /
    • v.38 no.2
    • /
    • pp.141-146
    • /
    • 1995
  • Changes of physicochemical properties of citron juice prepared by two different extraction methods, rotary-crushing and belt-pressing method, were investigated during the storage at $5^{\circ}C$ and $-20^{\circ}C$. Temperature drop of citron juice extracted by belt-pressing method was faster than that of citron juice prepared by rotary-crushing method and its freezing point was $0.8{\sim}0.9^{\circ}C$. During the storage, pH of stored citron juice with rotary-crushing method was increased up to 3.5 after 6 months storage while that of citron juice extracted by belt-pressing method was not changed significantly during the same storage time. Acidity of rotary-crushed citron juice was reduced a little more than that of belt-pressed citron juice during the storage. However, changes of soluble solid content were influenced largely by the storage temperature than by the extraction method. Contents of formol nitrogen and vitamin C were reduced remarkably in all of stored citron juice and $92{\sim}82%$ of farmol nitrogen and $72{\sim}43%$ of vitamin C were remained after 6 months of storage. Among the changes of color value, L values were reduced in the whole stored citron juice and a and b value had a different change pattern respectively according to the extraction and storage temperature. Changes in the content of both amino acid and fatty acid compositions was also observed after same storage period. Especially, in the case of change of fatty acid composition, content of linoleic acid and linolenic acid were reduced after 6 months storage, while those of palmitic acid, stearic acid and oleic acid were increased.

  • PDF

Effect of Nitrogen Impurity on Process Design of $CO_2$ Marine Geological Storage: Evaluation of Equation of State and Optimization of Binary Parameter (질소 불순물이 이산화탄소 해양 지중저장 공정설계에 미치는 영향 평가: 상태방정식의 비교 분석 및 이성분 매개변수 최적화)

  • Huh, Cheol;Kang, Seong-Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.12 no.3
    • /
    • pp.217-226
    • /
    • 2009
  • Marine geological storage of $CO_2$ is regarded as one of the most promising options to response climate change. Marine geological storage of $CO_2$ is to capture $CO_2$ from major point sources, to transport to the storage sites and to store $CO_2$ into the marine geological structure such as deep sea saline aquifer. Up to now, process design for this $CO_2$ marine geological storage has been carried out mainly on pure $CO_2$. Unfortunately the captured $CO_2$ mixture contains many impurities such as $N_2$, $O_2$, Ar, $H_2O$, $SO_x$, $H_2S$. A small amount of impurities can change the thermodynamic properties and then significantly affect the compression, purification and transport processes. In order to design a reliable $CO_2$ marine geological storage system, it is necessary to perform numerical process simulation using thermodynamic equation of state. The purpose of the present paper is to compare and analyse the relevant equations of state including PR, PRBM, RKS and SRK equation of state for $CO_2-N_2$ mixture. To evaluate the predictive accuracy of the equation of the state, we compared numerical calculation results with reference experimental data. In addition, optimum binary parameter to consider the interaction of $CO_2$ and $N_2$ molecules was suggested based on the mean absolute percent error. In conclusion, we suggest the most reliable equation of state and relevant binary parameter in designing the $CO_2-N_2$ mixture marine geological storage process.

  • PDF

Effects of Rare Earth Supplementation on Growth Performance, Blood Immune-Related Cell Population, Meat Quality and Fecal Odor Emission Gases in Finishing Pigs (사료내 희토 첨가가 비육돈의 생산성, 혈액내 면역관련 세포수, 육질특성 및 분 중 악취방출 가스함량에 미치는 영향)

  • Shin, Seung-Oh;Yoo, Jong0Sang;Lee, Je0Hyun;Jang, Hae0Dong;Kim, Hyo0Jin;Huang, Yan;Chen, Ying-Jie;Cho, Jin-Ho;Kim, In-Ho
    • Journal of Animal Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.485-498
    • /
    • 2008
  • This study was conducted to evaluate effects of dietary rare earth on growth performance, blood immune- related cell population, meat quality and fecal odor emitting gases in finishing pigs. The total of sixty four (Landrace×Yorkshire×Duroc) pigs(65.42±1.16kg in average initial body weight) were used for feeding trial during 10 weeks of experimental period. Dietary treatments included 1) NC(antibiotic free diet), 2) PC (NC diet+6 weeks 44ppm of tylosin/ 4 weeks 22ppm of tylosin) 3) RE1 (NC diet + 100ppm of RE), 4) RE2 (NC diet+200ppm of RE). There were four dietary treatments with four replicate pens per treatment and four pigs per pen. During the overall periods, there were no significant differences in ADG(Average daily gain), ADFI (Average daily feed intake) and gain/feed ratio among treatments(P>0.05). Dry matter and nitrogen digestibility were higher in RE2 treatment group than other groups(P<0.05). Also, energy digestibility was higher in RE2 treatment group than PC and RE1 treatment groups(P<0.05). At the 6th week WBC(white blood cell) was significantly increased(P<0.05) in RE1 treatment group than NC and RE2 treatment groups. L* value of M. logissimus dorsi muscle color was significantly increased(P<0.05) in rare earth supplemented groups compared to NC treatment group(P<0.05). However, a* value was lower in RE1 treatment group than PC treatment group (P<0.05). In fatty acid composition of Intramuscular fat, total MUFA was significantly higher in RE2 treatment group than other groups(P<0.05). Also, total UFA was significantly increased in RE2 treatment group compared with NC and PC treatment groups(P<0.05). In fatty acid composition of back fats, total SFA of rare earth supplemented groups were lower than in PC treatment group(P<0.05). UFA:SFA ratio was significantly higher in rare earth supplemented groups than PC treatment group(P<0.05). In fecal odor emission, NH3 was significantly decreased(P<0.05) in rare earth supplemented groups compared to NC and PC treatment groups. In conclusion, the results of the experiment was affected by rare earth supplementation on digestibilities, meat quality, fatty acid and fecal odor emission gases in finishing pigs.

Growth Characteristic and Nutrient Uptake of Water Plants in Constructed Wetlands for Treating Livestock Wastewater (인공습지를 이용한 축산폐수처리장에서 수생식물의 생육특성과 영양염류 흡수특성)

  • Park, Jong-Hwan;Seo, Dong-Cheol;Kim, Seong-Heon;Lee, Choong-Heon;Choi, Jeong-Ho;Lee, Sang-Won;Lee, Dong-Jin;Ha, Yeong-Rae;Cho, Ju-Sik;Heo, Jong-Soo
    • Korean Journal of Environmental Agriculture
    • /
    • v.31 no.4
    • /
    • pp.351-358
    • /
    • 2012
  • BACKGROUND: Constructed wetlands for wastewater treatment are vegetated by wetland plants. Wetland plants are an important component of wetlands, and the plants have several roles in relation to the livestock wastewater treatment processes. The objectives of this study were to investigate the growth characteristics and nutrient absorption of water plants in constructed wetlands for treating livestock wastewater. METHODS AND RESULTS: In this study, livestock wastewater treatment plant by constructed wetlands consisted of $1^{st}$ water plant filtration bed, $2^{nd}$ activated sludge bed, $3^{rd}$ vertical flow(VF), $4^{th}$ horizontal flow(HF) and $5^{th}$ HF beds. Phragmites communis TRINIUS(PHRCO) was transplanted in $3^{rd}$ VF bed, Iris pseudoacorus L(IRIPS) was transplanted in $4^{th}$ HF bed and PHRCO, IRIPS and Typha orientalis PRESEL(THYOR) were transplanted in $5^{th}$ HF. Growth of water plants in constructed wetlands were the highest in October. The IRIPS growth was higher than other plant as 264 g/plant in October. The absorption of nitrogen and phosphorus by IRIS were 3.38 g/plant and 0.634 g/plant, respectively. The absorption of K, Ca, Mg, Na, Fe, Mn, Cu and Zn by water plants were higher in the order of IRIPS > THYOR > PHRCO. CONCLUSION(S): The absorption of nutrients by water plants were higher on the order of IRIPS > THYOR > PHRCO in constructed wetlands for treating livestock wastewater.

Salinity Effects on Growth and Yield Components of Rice (관개용수내 염분농도가 벼 생육 및 수량에 미치는 영향)

  • Choi, Sun-Hwa;Kim, Ho-Il;Ahn, Yeul;Jang, Jeon-Ryeol;Oh, Jong-Min
    • Korean Journal of Ecology and Environment
    • /
    • v.37 no.2 s.107
    • /
    • pp.248-254
    • /
    • 2004
  • This study was conducted to investigate the effects of salinity in irrigation water on the growth, yield components, yield and grain quality of rice plant by the pot experiments. Irrigation waters were supplied with control and amended with NaCl at 1,000, 2,000, 3,000, 5,000, and 7,000 ${\mu}s\;cm^{-1}$ electrical conductivity. A randomized block design was used with four replicates for each treatment and control. As increasing salt concentration, plant height, tiller number, SPAD value, dry weight, content of N, P, and K, ripened grain ratio (%), 1,000 grain weight, and protein content (%) tended to decrease, especially, significant at 3,000 ${\mu}s\;cm^{-1}$ of salt level. Grain yield decreased significantly at all treatments. The percentage of head rice slightly tended to increase as the salt concentration due to the decrease of green kernel. The percentage of green kernel was significantly lower at 3,000 ${\mu}s\;cm^{-1}$ of salt level than the control.

Methodological Comparison of the Quantification of Total Carbon and Organic Carbon in Marine Sediment (해양 퇴적물내 총탄소 및 유기탄소의 분석기법 고찰)

  • Kim, Kyeong-Hong;Son, Seung-Kyu;Son, Ju-Won;Ju, Se-Jong
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.9 no.4
    • /
    • pp.235-242
    • /
    • 2006
  • The precise estimation of total and organic carbon contents in sediments is fundamental to understand the benthic environment. To test the precision and accuracy of CHN analyzer and the procedure to quantify total and organic carbon contents(using in-situ acidification with sulfurous acid($H_2SO_3$)) in the sediment, the reference material s such as Acetanilide($C_8H_9NO$), Sulfanilammide($C_6H_8N_2O_2S$), and BCSS-1(standard estuary sediment) were used. The results indicate that CHN analyzer to quantify carbon and nitrogen content has high precision(percent error=3.29%) and accuracy(relative standard deviation=1.26%). Additionally, we conducted the instrumental comparison of carbon values analyzed using CHN analyzer and Coulometeric Carbon Analyzer. Total carbon contents measured from two different instruments were highly correlated($R^2=0.9993$, n=84, p<0.0001) with a linear relationship and show no significant differences(paired t-test, p=0.0003). The organic carbon contents from two instruments also showed the similar results with a significant linear relationship($R^2=0.8867$, n=84, p<0.0001) and no significant differences(paired t-test, p<0.0001). Although it is possible to overestimate organic carbon contents for some sediment types having high inorganic carbon contents(such as calcareous ooze) due to procedural and analytical errors, analysis of organic carbon contents in sediments using CHN Analyzer and current procedures seems to provide the best estimates. Therefore, we recommend that this method can be applied to measure the carbon content in normal any sediment samples and are considered to be one of the best procedure far routine analysis of total and organic carbon.

  • PDF