본 연구는 고정 생물막을 이용한 혐기/무산소/호기 공정으로 구성된 반응기에서 폴리에틸렌 재질의 표면을 이온빔으로 조사하여 소수성 표면을 친수성으로 만든 표면개질담체를 호기조의 여재로 사용하고 혐기/무산소조의 여재로는 표면 개질을 하지 않은 담체를 사용하여, 외부 탄소원 대신 원수내의 RBDCOD를 탄소원으로 이용하고자 혐기조와 무산소조에 원수를 분할 주입하였을 때 나타나는 유기물 및 T-N 제거 특성을 알아보았다. 혐기/무산소조로의 원수 분배율이 각각 10 : 0, 9 : 1, 8 : 2, 6 : 4로 설정하였으며, 각각의 분배율에 대하여 $93.3\%,\;92.6\%,\;92.4\%,\;91.6\%$의 $BOD_5$ 제거율 (유기물의 제거능)을 보였다. 하지만 무산소조까지의 $BOD_5$ 제거율(유기물 이용능)은 9 : 1에서 $84.8\%$로 가장 높은 것으로 나타났으며, 분배율 10 : 0, 8 : 2는 각각 $77.0\%,\;75.3\%$로서 거의 비슷한 수준이었고, 분배율 6 : 4 경우에 $61.1\%$로 가장 낮은 수치를 나타내었다. T-N 제거율은 9 : 1의 분배율로 분할하였을 때가 $67.4\%$로 가장 제거 효율이 높았으며, 분배율 10 : 0, 8 : 2 경우는 각각 $61.3\%,\;60.7\%$로 비슷한 경향을 보였으나 분배율을 6 : 4로 하였을 때는 $55.5\%$의 제거율을 나타내 분배율 9 : 1의 경우와는 약 $12\%$의 차이를 보였다. 또한 10 : 0, 9 : 1, 8 : 2의 분배율에서는 질산화가 거의 비슷한 수준으로 발생하였지만, 6 : 4로 주입하였을 경우에는 질산화의 저해가 나타나고, 방류수 중의 대부분의 질소성분이 암모니아 성분으로 방류되었다. 이 공정에서 탄소원으로 생하수를 이용하는 것이 메탄올과 같은 독성 탄소원에 비해 독성을 지니지 않고 약품비용이 들지 않는다는 측면에서 유리할 것으로 사료된다.
암모늄태질소를 질소의 급원으로 공급하기 위하여 요소와 유안을 질소조성물로 하여 2대1로 혼합한 후 다시 점결제 및 확산완충계와 혼합하여 비커형태의 용기안에 충진하여 제조된 시제품인 $NH_4$-Beaker Deeposit비료를 토마토유묘의 정식기에 유묘의 밑으로 1회 국지사용하여 토마토에 대한 생육 및 수량과 질소공급 효과를 일반 시비방법인 $NH_4NO_3$를 3회 전층 분배시용한 관행의 대구조와 비교하였다. 1년차 시험에서 질소의 용출을 조절하기 위하여 유안과 요소를 2:1로 혼합한 질소조성물에 7.5 g의 석고를 점결제로 사용하였을 때 토마토과실 수량은 1주당 6345 g으로 관행의 대조구의 수량인 5865 g보다 증수되었다. 토마토과실과 경엽의 총 질소흡수량 또한 7.5 g의 석고를 점결제로 사용한 $NH_4$-Beaker Deposit비료 시용구에서 8997 mg으로 관행의 7215 mg보다 통계적 유의성이 있었다. 2년차 시험에서는 C/N율이 10인 퇴비를 확산완충제로 비커에 충진한 시험구 5를 제외한 모든 $NH_4$-Beaker Deposit비료의 시용구에서의 질소흡수량이 높았다. 질소의 용출을 조절하기 위하여 7.5 g의 석고를 비커안에 충진하고, 그 윗부분으로 질소의 확산기울기를 조절하기 위하여 점질토양을 확산 완충제로 충진한 처리구에서의 토마토과실의 질소흡수량은 주당 8646 mg으로 가장 높았으며 관행의 대조구와 통계적인 유의성이 있었다. 토마토작물의 뿌리분포를 조사한 결과 확산완충제로 점질토양, C/N율이 16인 퇴비를 사용한 처리구의 경우 뿌리가 비커로 집중분포 되는 경향을 나타냈으며 굴지성에 반하여 비커안으로 자라는 현상을 나타냈다. 토마토 수량 및 질소흡수량을 고려할 때 7.5 g의 석고를 점결제로 사용하고, C/N율이 16인 부엽퇴비 및 점질토양을 확산완충제로 비커에 충진하여 제조한 시제품이 가장 좋은 처리로 판단되었다.
토양/대수층 처리(Soil Aquifer Treatment, SAT)는 하수처리장으로부터의 2차 또는 3차 처리수를 대수층으로 침투시켜, 토양 매질에서 일어나는 물리적/생화학적 반응에 의해 재처리하는 용수 재이용 기술이다. SAT에서의 주요 관심 대상은 유기물과 질소화합물의 제거와 이송에 있다. 본 연구에서는 암모늄의 질산화 반응, 질소산회물의 탈질 반응, 그리고 유기물의 산화반응을 고려하여 SAT에서 일어나는 반응 메커니즘을 규명하고 이를 지하수 흐름과 이송 모렐 에 접목시킴으로써 SAT 모델링 시스템을 구현하고자 하였다. 실험실 일차원 불포화 토양 컬럼 실험을 통한 모델 검증에서 암모늄, 질산성 질소, DOC, 용존산소 모두 일정한 농도 범위 안에서 일치하였다. 모델 변수에 대한 민감도 분석에서, 암모늄 분배계수는 유출부의 암모늄 농도에, 용존산소 저해상수는 유출부의 유기물 농도에, 그리고 미생물 감쇄계수는 유출부의 용존산소 농도에 영향을 주었다.
$^{18}F$-FDG 자동합성장치에서 합성 후 자동분배장치까지는 자동모드로 delivery를 하게 되는데, delivery 후 자동분배장치에 있는 dose calibrator가 표시한 방사능으로 계산하여 수율이 계산되어진다. 그러나 자동합성장치와 자동분배장치의 거리가 증가하게 되면 튜빙에 $^{18}F$-FDG 잔류량이 발생하게 되어 $^{18}F$-FDG의 손실이 있다. 본 연구는 $^{18}F$-FDG 잔류량을 최소화하기 위한 방법의 유용성에 관하여 알아보았다. 싸이클로트론에서 생산된 $^{18}F$는 자동합성장치로 이동되고 자동합성장치에서 합성이 이루어지며, 합성 과정의 소요 시간은 25~26분이 소요된다. 그 후 dispenser로 $^{18}F$-FDG를 delivery하고 자동합성장치 자체 rinsing으로 모든 과정이 끝마쳐진다. 자동합성장치와 자동분배장치 사이의 튜빙의 구성은 거리 8 m, 내경 1/16 inch로 되어 있다. 그러나 delivery 후 튜빙 거리 증가에 따라 $^{18}F$-FDG 잔류량이 10-13%가 발생하게 되었다. 따라서 $^{18}F$-FDG 잔류량을 최소화하기 위하여 첫번째는 자동합성장치의 자동모드로 delivery, 두번째로 자동모드 delivery 후 push syringe 이용한 방법, 세번째로 자동모드 delivery후 push syringe와 질소가스를 병행한 방법을 시행하여 delivery 수율의 변화를 비교 분석하였다. 첫번째 방법에서 delivery 시에 QMA 기준으로 42.22%, 두번째 방법에서는 49.15%, 세번째 방법에서는 54.05%의 결과를 얻었다. Delivery 되어진 $^{18}F$-FDG 의 품질관리평가상에서도 정상의 결과를 얻었다. 합성장치와 자동합성장치의 거리는 최대한 단축시켜 튜빙거리로 인한 $^{18}F$-FDG 손실율을 낮추어야 한다. 그러나 시스템구조에 따라 자동합성장치와 자동분배장치의 거리가 증가되는 경우에 push syringe와 범용성 이동가스(질소 가스)를 병행하는 방법이 $^{18}F$-FDG 잔류량을 최소화하는 방법으로 유용하다.
본 연구에서는 노지에 식재된 '부유' 단감나무에 있어서 6월이나 9월의 엽면시비가 관행적인 토양시비에 비해 영양 생장과 건물 축적, 질소함량 및 이들의 분포, 그리고 수령이 많아짐에 따라 증가하는 건물과 질소함량 가운데 수확 과실과 낙엽을 통해 나무로부터 영구적으로 소실되는 양적 비율을 추정하고자 하였다. 이를 위해 4-6년생 '부유' 단감나무로 6월과 9월에 1회 또는 2회 엽면시비구와 관행적인 6+9월 토양시비를 대조구로 두는 4처리를 3년간 같은 나무에 적용한 다음 매년 11월에 나무를 굴취하여 분석하였다. 주당 건물중은 4년생에서는 4.2-4.8kg, 5년생에서는 8.7-9.2kg, 6년생에서는 17.1-21.5kg이었지만 추비 시기 및 방법에 따른 유의적인 차이는 없었다. 건물중의 기관별 분포를 보면 신초는 3.3-10.2%, 잎은 5.7-10.5%, 2년생 이상 목질부는 8.3-31.4%, 뿌리는 13.0-27.0%, 과실은 28.0-59.3%였다. 뿌리와 과실의 건물중은 서로 반대되는 변화를 보였는데, 특히 과실 건물중이 주당 건물중의 50-60%에 달한 6년생 나무의 뿌리는 10.6-15.8%에 지나지 않았다. 주당 질소함량은 처리에 따른 차이 없이 4년생은 24.6-28.3g, 5년생은 48.3-53.5g, 6년생은 98.3-122.6g의 범위에 있었는데, 이중 신초에는 6.2-11.5%, 잎에는 16.7-24.3%, 2년생 이상 목질부에는 17.6-23.5%, 과실에는 16.9-34.4%, 뿌리에는 17.2-37.5%가 분포하고 있었고, 과실의 비율이 높아지면 뿌리의 비율이 낮아지는 것은 건물중에서의 변화와 비슷하였다. 잎과 과실을 통해 나무로부터 소실되는 건물중 비율은 추비 방법에 따른 차이 없이 4년생과 5년생에서는 41% 내외였으나 주당 수량이 많았던 6년생에서는 61%로 높았다. 4년생 나무는 전체 질소의 39%, 5년생에서는 43%, 6년생에서는 49%가 나무로부터 소실되는 것으로 나타났다. 부위별 건물중과 질소함량 모두 처리에 따른 유의적인 차이가 없음은 '부유' 단감나무 유목에 있어서 시비량이 월등히 적은 엽면시비의 이용가치를 입증하는 결과로 볼 수 있다.
본 연구는 착과 정도에 따른 '부유' 감나무(Diospyros kaki cv. Fuyu)의 수체 부위별 질소화합물 분배와 저장양분의 축적 정도를 밝히고, 이들이 다음해 새로운 생장에 재이용되는 관계를 구명하였다. 6월 15일에 엽과비가 10, 20, 30이 되도록 착과량을 조절하였고, 일부는 모든 과실을 완전히 제거하였다. 6월 15일부터 11월 1일까지 증가한 총 아미노산은 제과수에서 가장 많았고, 엽과비가 높을수록 증가하였다. 뿌리는 엽과비 10에서 당년 아미노산의 증가가 없었다. 증가한 총 아미노산이 뿌리로 분배된 비율은 엽과비 20에서 64%, 엽과비 30에서 18.5%, 제과수에서 81%였다. 과실로 분배된 비율은 엽과비 10에서 81%, 엽과비 20에서 12%, 엽과비 30에서 35%였다. 당년 착과량이 많은 엽과비 10의 잎에서 아미노산이 감소하였다. 이 기간 동안 증가한 총 단백질은 엽과비가 높을수록 증가하였다. 당년에 증가한 단백질은 과실로 가장 많이 분배하였고, 엽과비가 낮을수록 영구기관으로 분배되는 양이 감소하였다. 엽과비 30에서는 당년에 증가한 총 단백질이 과실로 59%, 뿌리로 40% 분배하였다. 당년 엽과비 10과 20의 잎에서 단백질이 감소하였다. 이듬해 4월 10일부터 6월 10일까지 신초생장기 동안 아미노산은 모든 처리구의 2년생 이상의 가지와 신초에서, 단백질은 모든 처리구의 신초에서 감소하였다. 특히 제과수는 뿌리에서 아미노산이 540 mg, 단백질이 610 mg 감소하였다. 이듬해 새로운 부위의 총 아미노산과 단백질은 전년도 제과수에서 각각 730 mg, 1290 mg으로 높았고, 전년도 착과량이 많은 엽과비 10에서 각각 120 mg, 400 mg으로 낮았다.
인삼(人蔘)(3년근(年根))의 생육(生育)과 무기양분의 부위별(部位別) 분포(分布)를 네 농도의 질소형태 (황안, 뇨소, 질산칼슘)별로 사경(砂耕)조건에서 조사하였다. 형태에 관계없이 50ppm에서 지상부 및 근부생육이 최대였다. 질산태는 최대의 근중을 뇨소태는 최대의 지상부중을 보였다. 무질소구에서 엽폭이 켰다. 경장(莖長)과 경직경(莖直徑)의 비(比)는 질산태보다 암모니아태에서 적고 근동체부(根胴體部)의 장(長), 직경비(直徑比)는 이와 반대여서 지토부(地土部)와 근부(根部)의 장(長), 직경비(直徑比)는 부상관(負相關)을 보였다. 질소시용은 엽(葉)과 경(莖)에서 인산의 농도를 높인 반면 칼슘의 농도는 저하시켰다. 50ppm구에서는 모든 질소형태에서 무질소구에 비하여 잎으로의 P의 분배(分配)는 감소하였으며 Mg, Ca 및 N는 증가하였다.
에싱(Ashing)공정을 위한 원격 유도 결합 플라즈마(remote ICP)에서 플라즈마 균일도를 향상하는 연구를 진행하였다. 본 연구에서는 고균일도 플라즈마 발생을 위해 단면적이 다른 2개의 반응 용기를 각각 상부와 하부에 설치하여 각각의 반응 용기 외곽에 방전 코일이 위치하도록 구성하였다. 0.7~1 Torr 공정 압력 범위의 질소와 산소 혼합 기체에서 2,500 W 전력을 인가하였고, 임피던스 정합회로로부터 각각 병렬로 연결된 방전 코일에 전력이 분배되어 인가된다. 에싱 공정을 위한 플라즈마 균일도를 분석하기 위해 Wafer의 위치에서 부유 탐침법을 적용하여 중심부에서 외곽부로 지름축 위치를 변화시키며 플라즈마 밀도와 전자온도를 측정하고, 공정 조건에 따른 에싱율(Asing Rate)을 측정하였다. 동일한공정 조건에서 하나의 방전 코일을 이용한 경우의 플라즈마 균일도 대비 이중 코일 구조를 이용한 경우 플라즈마 균일도가 크게 향상됨을 보였다. 이는 상부의 유도코일이 wafer 위치에서 주로 지름방향 중심부의 플라즈마 밀도에 기여하고, 하부의 유도코일은 주로 외곽의 플라즈마 밀도에 기여해서 나타나는 현상이다. 공정용 장비에서 플라즈마 균일도의 개선으로 공정 수율을 증가 시키는 효과를 기대할 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.