• Title/Summary/Keyword: 질산화 미생물

Search Result 150, Processing Time 0.027 seconds

Measurement of Ammonia Inhibition of Activated Sludge by DHA-INT (DHA-INT를 이용한 활성슬러지의 암모니아 저해도)

  • Lee, Sang-Min;Jung, Jin-Young;Chung, Yun-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.11
    • /
    • pp.1969-1976
    • /
    • 2000
  • It is a time consuming work to identify the inhibition of unknown chemicals or industrial wastewater. Thus it is needed to establish a fast assay tool for finding a toxicant source. Biomass activity and ammonia inhibition were measured by DHAINT method. Ammonia inhibition tests were comprised of total ammonia inhibition and free ammonia inhibition. Those inhibitions were carried out by nitrifier and heterotroph each other with nitrifier inhibitor. The ammonia inhibition was proportional to an amount of total ammonia and pH increase. It meaned that a free ammonia played a key role for ammonia inhibition. however both total ammonia and free ammonia should be considered for an accurate assay of the ammonia inhibition. Nitrifier was more sensitive than heterotroph when the ammonia concentration above 3.000mg/L.

  • PDF

A study on the comparison of coated nitrifying bacteria on nitrification efficiency and distribution of nitrifying bacteria

  • Kwon, Hyun-Jin;Yoon, Joung-Yee;Chae, Jong-San;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.434-438
    • /
    • 2005
  • Nitrification characteristics and performance of wastewater treatment plants depend on not only temperature, pH, and dissolved oxygen of the wastewater but also species, distribution, and their metabolic stages of nitrifying bacteria. Due to their low specific growth rate, nitrifying bacteria are easy to wash out of the reactor and need long time to start-up and recover from damaged nitrifiers community. In order to overcome this limitation, nitrifying bacteria were coated on a polyurethane-based media. Laboratory and pilot-scale reactor had been designed and operated to compare the effect of coated nitrifying bacteria on wastewater nitrification efficiency and performance. Furthermore, the species and quantitative distribution of nitrifying bacteria were also investigated in the suspension and on the media. The results showed that nitrifier-coated reactor had better nitrification efficiency and performance than the control experiments. It also demonstrated that the amounts of total nitrifying bacteria of a coated reactor was higher than other reactors and it increased with operation time and wastewater temperature.

  • PDF

Effect of Factors of Nitrification Process in Wastewater Treatment (폐수처리에 있어 질산화 공정 인자의 영향)

  • Jeong, Gwi-Taek;Park, Seok-Hwan;Park, Jae-Hee;Lim, Eun-Tae;Bang, Sung-Hun;Park, Don-Hee
    • KSBB Journal
    • /
    • v.24 no.3
    • /
    • pp.296-302
    • /
    • 2009
  • This paper was investigated the research regarding the effects of several factors such as initial ammonium nitrogen concentration, aeration rate. biomass amount and C/N ratio on nitrification process using synthetic wastewater and activated sludge obtained from wastewater treatment facility. As a result, in high ammonium nitrogen concentration above 100 mg/L, the pH of wastewater was dropped to pH 6.8. The increases of initial ammonium nitrogen concentration, aeration rate and initial biomass amount were linearly enhanced the removal rate of ammonium nitrogen. In the condition of C/N ratio of 0 to 3, high ammonium nitrogen removal rate was obtained.

포기 시간 변경에 따른 SBR의 영양염류 제거 특성과 MLVSS에 관한 연구

  • Jeong, No-Seong;Park, Yeong-Sik;Kim, Dong-Seok
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2007.05a
    • /
    • pp.383-389
    • /
    • 2007
  • 호기시간 변경에 따른 SBR에서의 영양염류제거특성과 MLVSS의 변화를 본 이번 연구에서는 다음과 같은 결론을 얻었다. 1) 충분하지 못한 산소의 공급은 미생물의 wash-out으로 인한 영양염류 제거 효율의 저조를 나타냈다. 2) 산소 공급량이 $0.045m^3$였던 R2에서 저조산 질산화가 나타났으나, 인을 과다 축적하는 EBPR(Enhanced Biological Phosphorus Removal)을 나타냈다. 3) 산소 공급량이 $0.06m^3$이상이었던 R3, R4에서는 60%이상의 질산화 및 탈질화와 약 100%에 달하는 인 제거 효율을 나타내었다. 4) 단위 미생물당 $1.5{\sim}1.8ml/mg$의 공급 산소량이 인 흡수에 유리한 것으로 나타났다. 5) 공급되는 산소에 있어 유기물 분해>인흡수>질산화에 우선적으로 소모되는 것으로 나타났다.

  • PDF

Optimum loading capacity and nitrification characteristics of the swine wastewater treatment process using soil microbe (토양미생물을 이용한 축산폐수 처리공정의 적정부하율과 질산화공정의 특성)

  • Ha, Jun-Soo;Shin, Nam-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.2
    • /
    • pp.183-187
    • /
    • 2000
  • Removal rate of nitrogen compound containing swine wastewater was 97 percent in case of high loading rate treatment of swine wastewater at studies for process development using soil microorganism. Minimum hydraulic retention time(HRT) for nitrification process was 11 days and solid retention time was 25 days. Nitrification was between 5 and 11 days but this time $NO_2-N$ was remained. Reactor condition was injured to nitrosomonas according to pH, $NO_2\;^--N$, and $NH_3\;^--N$ concentration but this condition was recover to pH controlling.

  • PDF

Biofilm airlift 반응기를 이용한 선택적 질산화의 연구

  • Yun, Ho-Jun;Jang, Jae-Seon;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.457-460
    • /
    • 2000
  • A biofilm airlift reactor filled with biomass-covered carriers (sand) were used to remove ammonium by selective nitrification (ammonium to nitrite). The effects of experimental conditions (ammonium load, pH, dissolved oxygen) on nitrification and nitrite accumulation were investigated. The reactor showed more than 90% nitrification efficiencies at 2.5 kg $NH_4\;^+-N/m^3/d$ and $NO_2\;^--N$ could be accumulated between 75% and 90% in the effluent. It is likely that nitratation (nitrite oxidizer) was inhibited by low dissolved oxygen concentration while nitritation (ammonium oxidizer) was kept stable.

  • PDF

Analysis on effect of heavy metal and Retention time to nitrification using industrial wastewater (중금속과 체류시간이 산업단지하수 질산화에 미치는 영향)

  • Im, Jiyeol;Gil, Kyungik
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.390-397
    • /
    • 2018
  • The Municipal Wastewater Treatment Plant(MWTP), located industrial estate, has a problem of decreasing nitrification efficiency. In this research, it was analyzed that effect of heavy metals and retention time to nitrification based on operational result of laboratory scale reactors. And suggest improving MWTP operation method for increasing nitrification efficiency based on findings. According to operational result, laboratory scale reactor shows over 60% nitrification efficiency over hydraulic retention time(HRT) 0.5 day. However, the nitrification efficiency of S MWTP(high heavy metal concentration) sample was lower than that of A MWTP(low heavy metal concentration) sample in same operational condition. The main reason was heavy metals in industrial wastewater. This heavy metals was acted as inhibitor to nitrifier in reactors. So, activity of nitrifier was analyzed based on specific nitrification rate(SNR). The SNR of S MWTP sample shows 0.13 ~ 0.21 mg NH4/gMLSS/hr and that of A MWTP sample shows 0.74 mg NH4/gMLSS/hr. As a result, the activity of nitrifier of S MWTP was lower than that of A MWPT. In other words, retrofit methods for improving nitrification efficiency in MWTPs located industrial estate were that to increase retention time in biological treatment process or to pretreat heavy metal before being injected biological treatment process.

Comparison of Removal Characteristics of Organic Matter, Nitrogen and Phosphorus in Suspended-Growth and Hybrid Processes with Hydraulic Retention Time (수리학적 체류시간에 따른 부유성장 미생물을 이용한 공정과 하이브리드 공정의 유기물, 질소 및 인 제거 특성 비교)

  • Ryu, Hong-Duck;Lee, Sang-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.1
    • /
    • pp.15-25
    • /
    • 2006
  • This study was initiated to evaluate the effect of HRT(hydraulic retention time) on removal efficiencies of organic matter (C), nitrogen(N) and phosphorus(P) in municipal wastewater for suspenced-growth processes(MLE; Modified Ludzack-Ettinger) and hybrid process(Modified-Dephanox). M-Dephanox process was designed to improve the performance of Dephanox process on denitrification efficiency. As the results, removal efficiencies of C, N and P in M-Dephanox process, which is hybrid process, were higher than those in MLE, which is suspended-growth process. Especially, nitrification inhibition of MLE was observed more severely than M-Dephanox as hydraulic retention time was reduced from 6 hr to 3.5 hr. Nitrification in nitrification reactors on M-Dephanox, at short HRT, was so excellent that ammonia nitrogen removal efficiency in nitrification reactors of M-Dephanox was about 92% at 1.59 hr of HRT of nitrification reactors, however, nitrification in nitrification reactors on M-Dephanox was affected severely by organic matter entering to nitrification reactors from downstream settler. It was observed that reducing of HRT in whole process resulted from reducing of HRT in nitrification reactors on M-Dephanox.

양어장수의 암모니아 제거시 포괄고정화 미생물의 질산화 속도식 도출

  • 이정훈;김병진;서근학
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2001.05a
    • /
    • pp.324-325
    • /
    • 2001
  • 총 암모니아성 질소(TAN)은고밀도 양식에서 한계요소로 작용하는 수질인자 중의 하나이다. 생물학적 암모니아 처리공정의 효율적인 설계를 위해서는 생물반응기의 암모니아 제거속도식을 구하여 처리시스템의 최적 용량을 구하여야 한다. 그러나 현재까지 진행된 고정화 미생물을 이용한 암모니아 제거공정에 대한 연구는 고정화 재질의 특성이나 장치의 운전효율에 대한 것으로 속도식에 대한 연구는 부족하다. (중략)

  • PDF