• Title/Summary/Keyword: 질산염 오염

Search Result 89, Processing Time 0.022 seconds

A Study on Release Characteristics of Lake Sediments under Oxic and Anoxic Conditions (호수 퇴적물의 호기 및 혐기조건에서의 용출 특성에 대한 연구)

  • Yoon, Mi-Hae;Hyun, Jun-Taek;Huh, Nam-Soo;Kwon, Sung-Hyun;Cho, Dae-Chul
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.9
    • /
    • pp.1003-1012
    • /
    • 2007
  • In this study, we analyzed the release differences for some critical pollution compounds according to the surrounding conditions in order to predict water quality due to the sedimental releases and the release characteristics at different sedimental locations in Lake Leewon, in Tae-An area. COD, nitrogens and phosphates were analyzed using the standard methods for water quality, based on high chloride ion concentration(greater than 2,000 ppm). For COD, the release rate increased in the anoxic basin but almost the same in the oxic basin. For $NH_3$-N, the release rate decreased in the oxic basin as you go A through C point meanwhile, for $NO_3$-N and T-N, the tendency was reversed because of nitrification of them. In the anoxic basin, the release rates of $NH_3$-N and $NO_3$-N went up with A through C path. However, the release rate of T-N was found to decrease. Also, for $PO_4$-P and T-P, the release rates in the oxic basin were lowest at B point mainly because the phosphates were at less released in the highly $O_2$ concentrated environment. In the anoxic reactor, $PO_4$-P was released similarly regardless of the sampling points. In summary, the release rates in the oxic reactor were greater than those in the anoxic reactor for COD and $NO_3$-N. For the other components, the anoxic basin generated the higher release rates.

Studies on Removal of Water Pollutants by Aquatic Plants II. Removal of Water Polluted Nutrients and Heavy Metals by Water Hyacinth (수생식물(水生植物)을 이용(利用)한 수질오염원제거(水質汚染源除去)에 관(關)한 연구(硏究) - 제2보(第2報) 부레옥잠의 영양염류(營養鹽類) 및 중금속(重金屬) 제거효과(除去效果))

  • Lee, Kyu-Seung;Kim, Moon-Kyu;Pyon, Jong-Yeong;Lee, Jong-Sik
    • Korean Journal of Weed Science
    • /
    • v.5 no.2
    • /
    • pp.149-154
    • /
    • 1985
  • Removal of water pollutants by water hyacinth was examined with two nutrients, $NO_3$-N, $PO_4$-P and four heavy metals, Cu, Pb, Cd, Cr under laboratory conditions. $NO_3$-N was reduced to 0.7, 0.9 and 1.2 ppm, and 0.1, 0.2 and 0.5 ppm in $NO_4$-P from 10, 25 and 50 ppm 3 days after treatment, respectively. Among heavy metals Cu and Pb were removed faster and higher than Cd and Cr and also amount of heavy metals absorbed by water hyacinth was higher in the order of Cu > Pb > Cr > Cd. Distribution of heavy metals in this plant was higher in roots than in leaves and amount absorbed in roots was related to the treated concentrations. The harmful effect on growth of water hyacinth was observed in Cu and Cd.

  • PDF

변환시설 발생 해체금속폐기물의 용용제염처리

  • Hwang, Du-Seong;Kim, Dong-Ho;Lee, Gyu-Il;Choe, Yun-Dong;Park, Jin-Ho;Jeong, Un-Su
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2009.06a
    • /
    • pp.63-64
    • /
    • 2009
  • 변환시설의 해체 시 발생한 해체폐기물은 2009년 현재까지 약 354톤이며, 이들 중 탱크, 배관, 반응기, 펌프류 동의 해체금속폐기물이 약 191톤으로 54% 를 차지하고 있다. 이들 해체금속폐기물은 제염 처리공정을 통하여 전량 자체처분폐기물로 전환시키는 것을 목표로 두고 있다. 이는 오염된 금속류를 효과적으로 제염한 다음 자체처분시킴으로서 방사성폐기물에 대한 처분비용을 저감할 수 있기 때문이다. 해체금속폐기물 중 스테인레스강 해체폐기물은 질산 용액을 사용한 초음파화학제염공정으로 제염한 후 자체처분폐기물로 53톤을 전환하였다. 탄소강 해체물의 경우 스팀제염공정으로 제염한 결과 제영 효율은 좋았으나 변환시설 가동 중 유지 보수를 위하여 페인팅을 하였던 해체물의 경우 페인트를 제거하지 않을 경우 스팀제염장치로는 제염이 안 되었다. 탄소강 해체금속폐기물은 약 117톤 발생하였으며, 이들 중 모터, 펌프 등을 제외한 제염 대상 폐기물은 약 80톤이며, 이들을 용융 제염 및 감용을 위하여 기초 연구를 수행한 결과를 바탕으로 약 180kg/batch 용량의 금속용융제염 설비를 제작 설치하여 탄소강 해체금속폐기물 용융제염 처리를 수행 중에 있다. 금속용융은 장치가 간단하고 폐기물 처리량이 비교적 적고 단속적인 운전에 매우 효과적인 고주파 유도로를 사용하였다. 용융장치는 고주파 발진장지와 용해로체로 구성된 고주파 유도설비와 냉각계통으로 구성된다. 고주파발진장치는 철제 200kg을 용해할 수 있는 용량을 갖추었으며, 실험 및 실제 처리 등 용해로체의 크기 변경이 필요할 경우에는 고주파발진기의 출력 주파수를 변경할 수 있게 하였다. 용융 장치의 발진기 부분의 입력전원은 3상, 440V, 60Hz 이며, 출력전원은 200kW, 출력주파수는 lkHz, 3kHz, 5kHz로 구성되어 있으며, 회당 180kg 의 폐기물을 용융할 시에는 3kHz로 고정하여 사용하였다. 용해로체 부분 중 고주파유도가열부는 heating coil 및 절연부로 구성되어 있고, 그 외 support frame과 lever로 구성되어 있다. 용해로체와 고주파 발진장치의 냉각을 위한 냉각설비는 냉각기와 냉매의 저장을 위한 저장조로 구성되어 있으며, 냉각기의 용량은 20RT 이다. 용융로체의 직경은 약 28cm로 크기가 큰 해체물의 장입이 어려워 작은 크기로 세절을 해야만 하며,용융로의 용량을 증가시킬 경우 해체물을 작은 크기로 세절하는 비용을 절감할 수 있을 것이다. 용융 중 시료 채취는 매 배치마다 수행하였으며, 그림3과 같은 시료 채취용 주형 틀에 국자모양의 채취기로 채취하였다. 해체물의 용융시 ingot를 생성하기 위해서 주형틀에 용융물을 장입하기 전 시료를 채취하였다 그림4는 생성된 ingot이며, 이들의 방사능 농도는 배치마다 차이는 있지만 최대 0.05 Bq/g 이하로 나타나 자체처분 폐기물로 전량 전환 가능하였다 그림5 는 해체물에 함유된 우라늄과 불순물을 제거한 슬래그로 방사능농도는 약 12Bq/g 으로 나타났으며, 이들의 발생량은 약 3wt% 정도로 폐기물 발생량이 작았다. 따라서 금속폐기물의 경우 용융제염으로 처리할 경우 폐기물 발생량을 최대로 줄일 수 있어 처리 효율이 기타 처리 공정보다 효율적인 것으로 판단된다.

  • PDF

Analysis of Correlation Between the Number of Cyanobacterias and Water Quality Parameters in Geum River (금강유역의 남조류 세포수와 수질인자 간의 상관관계 분석)

  • Park, Gue Tae;Jang, Dong Woo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.213-213
    • /
    • 2020
  • 최근 나타나는 지구온난화와 이상기후로 인해 가뭄과 홍수피해 같은 자연재해 발생 빈도가 높아졌고, 하천에서는 오염된 수질과 수생태계 복원 및 수변공간 조성, 수자원 관리 등의 목적으로 수질환경 개선사업이 진행되고 있다. 수질환경 측면에서 하천에서 발생하는 가장 큰 문제점으로는 녹조 즉, 남조류의 발생을 예로 들 수 있다. 본 연구에서는 최근 보 개방을 통하여 수질개선 효과가 나타나고 있는 금강을 대상으로 세종보, 공주보, 백제보 구간에 대하여 주요 수질인자에 대한 상관관계 분석을 수행하였다. 특히 남조류 세포수와 주요 하천 수질인자를 Pearson's correlation analysis를 이용하여 상관관계를 분석하였고, 보 위치별 남조류 세포수를 종속변수로 하고, 상관도가 높은 수질인자를 독립변수로 하는 다중회귀식을 도출하여 금강 내 주요 하천 수질인자의 농도에 따른 남조류 세포수 관계를 규명하고자 하였다. 분석기간은 2012년 1월부터 2019년 12월까지 보 건설 이후 시점으로 선정하였고, 월 평균 남조류 개체수가 조류경보제 발령기준 관심단계이상에 해당하는 금강수계의 3개 보에 대하여 남조류 세포수와 수질에 영향을 끼치는 인자인 강수량, (수온)W·T, (수소이온농도)pH, (용존산소)DO, (생물화학적산소요구량)BOD, (화학적산소요구량)COD, (부유물질량)SS, (총질소)TN, (총인)TP, (클로로필-a)Chl-a, (전기전도도)EC, (질산성질소)NO3-N, (암모니아성 질소)NH3-N, (인산염 인)PO4-P, (용존총질소)DTN, (용존총인)DTP, (총유기탄소)TOC 와의 상관관계를 분석하였다. 분석 결과 측정 지점별 남조류 세포수와 상관관계가 있는 인자는 서로 상이했지만 (수온)W·T과 pH의 경우 모든 지점에서 남조류 세포수와 양의 상관관계가 나타났다. 세종보는 W·T(0.383, P<0.01), pH(0.391, P<0.05)의 양의 상관계수를 나타냈고, 공주보에서는 (수온)W·T(0.436, P<0.05), pH(0.412, P<0.05)의 양의 상관관계를 나타냈다. 백제보에서는 (수온)W·T(0.415, P<0.01), pH(0.221, P<0.01)의 양의 상관성을 나타냈다. 남조류 세포수와 수질인자 간의 상관관계 분석에 따라 통계적으로 유의한 인자 중 (수온)W·T과 pH에 영향을 받는 영양염류와 퇴적물에 대한 후속 연구가 필요할 것으로 사료되며, 연구를 통해 제시된 남조류 세포수 다중회귀식은 주요 수질인자 농도에 따라 발생 가능한 남조류세포수를 예측하여 금강의 수질 관리에 활용될 수 있을 것으로 기대된다.

  • PDF

Self-purification Mechanisms in Natural Environments of Korea: I. A Preliminary Study on the Behavior of Organic/Inorganic Elements in Tidal Flats and Rice Fields (자연 정화작용 연구: I. 갯벌과 농지 상층수중 유 ${\cdot}$ 무기 원소의 거동에 관한 예비 연구)

  • Choi, Kang-Won;Cho, Yeong-Gil;Choi, Man-Sik;Lee, Bok-Ja;Hyun, Jung-Ho;Kang, Jeong-Won;Jung, Hoi-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.3
    • /
    • pp.195-207
    • /
    • 2000
  • Organic and inorganic characteristics including bacterial cell number, enzyme activity, nutrients, and heavy metals have been monitored in twelve acrylic experimental tanks for two weeks to estimate and compare self-purification capacities in two Korean wet-land environments, tidal flat and rice field, which are possibly different with the environments in other countries because of their own climatic conditions. FW tanks, filled with rice field soils and fresh water, consist of FW1&2 (with paddy), FW3&4 (without paddy), and FW5&6 (newly reclaimed, without paddy). SW tanks, filled with tidal flat sediments and salt water, are SW1&2 (with anoxic silty mud), SW3&4 (anoxic mud), and SW5&6 (suboxic mud). Contaminated solution, which is formulated with the salts of Cu, Cd, As, Cr, Pb, Hg, and glucose+glutamic acid, was spiked into the supernatent waters in the tanks. Nitrate concentrations in supernatent waters as well as bacterial cell numbers and enzyme activities of soils in the FW tanks (except FW5&6) are clearly higher than those in the SW tanks. Phosphate concentrations in the SW1 tank increase highly with time compared to those in the other SW tanks. Removal rates of Cu, Cd, and As in supematent waters of the FW5&6 tanks are most slow in the FW tanks, while the rates in SW1&2 are most fast in the SW tanks. The rate for Pb in the SW1&2 tanks is most fast in the SW tanks, and the rate for Hg in the FW5&6 tanks is most slow in the FW tanks. Cr concentrations decrease generally with time in the FW tanks. In the SW tanks, however, the Cr concentrations decrease rapidly at first, then increase, and then remain nearly constant. These results imply that labile organic materials are depleted in the FW5&6 tanks compared to the FW1&2 and FW3&4 tanks. Removal of Cu, Cd, As from the supernatent waters as well as slow removal rates of the elements (including Hg) are likely due to the combining of the elements with organic ligands on the suspended particles and subsequent removal to the bottom sediments. Fast removal rates of the metal ions (Cu, Cd, As) and rapid increase of phosphate concentrations in the SW1&2 tanks are possibly due to the relatively porous anoxic sediments in the SW1&2 tanks compared to those in the SW3&4 tanks, efficient supply of phosphate and hydrogen sulfide ions in pore wates to the upper water body, complexing of the metal ions with the sulfide ions, and subsequent removal to the bottom sediments. Organic materials on the particles and sulfide ions from the pore waters are the major factors constraining the behaviors of organic/inorganic elements in the supernatent waters of the experimental tanks. This study needs more consideration on more diverse organic and inorganic elements and experimental conditions such as tidal action, temperature variation, activities of benthic animals, etc.

  • PDF

Characteristics on De-CH4/NOx according to Ceramic and Metal Substrates of SCR Catalysts for CNG Buses (CNG 버스용 SCR 촉매의 세라믹과 메탈 담체에 따른 De-CH4/NOx 특성)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.18-24
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for about 95% of the automobiles in use. Also, in order to meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is gradually increasing. Natural gas is a clean fuel that emits few air pollutants and has been used mainly as a fuel for city buses. In the long term, we intend to develop a new NGOC/LNT+NGCO/SCR combined system that simultaneously reduces the toxic gases, $CH_4$ and NOx, emitted from CNG buses. The objective of this study is to investigate the characteristics of $de-CH_4/NOx$ according to the ceramic and metal substrates of the SCR (Selective Catalytic Reduction) catalysts mounted downstream of the combined system. The V and Cu-SCR catalysts did not affect the $CH_4$ oxidation reaction, the two NGOC/SCR catalysts each coated with two layers began to oxidize $CH_4$ at $400^{\circ}C$, and the amount of $CH_4$ emitted was reduced to about 20% of its initial value at about $550^{\circ}C$. The two NGOC/SCR catalysts each coated with two layers showed a negative (-) NOx conversion rate above $350^{\circ}C$. The ceramic-based combined system reached LOT50 at $500^{\circ}C$, which was about 20% higher in terms of the $CH_4$ conversion rate than the metal-based combined system, showing that the combined system of NGOC/LNT+Cu-SCR is a suitable combination.

Study of Spatiotemporal Variations and Origin of Nitrogen Content in Gyeongan Stream ( 경안천 내 질소 함량의 시공간적 변화와 기원 연구)

  • Jonghoon Park;Sinyoung Kim;Soomin Seo;Hyun A Lee;Nam C. Woo
    • Economic and Environmental Geology
    • /
    • v.56 no.2
    • /
    • pp.139-153
    • /
    • 2023
  • This study aimed to understand the spatiotemporal variations in nitrogen content in the Gyeongan stream along the main stream and at the discharge points of the sub-basins, and to identify the origin of the nitrogen. Field surveys and laboratory analyses, including chemical compositions and isotope ratios of nitrate and boron, were performed from November 2021 to November 2022. Based on the flow duration curve (FDC) derived for the Gyeongan stream, the dry season (mid-December 2021 to mid-June 2022) and wet season (mid-June to early November 2022) were established. In the dry season, most samples had the highest total nitrogen(T-N) concentrations, specifically in January and February, and the concentrations continued to decrease until May and June. However, after the flood season from July to September, the uppermost subbasin points (Group 1: MS-0, OS-0, GS-0) where T-N concentrations continually decreased were separated from the main stream and lower sub-basin points (Group 2: MS-1~8, OS-1, GS-1) where concentrations increased. Along the main stream, the T-N concentration showed an increasing trend from the upper to the lower reaches. However, it was affected by those of the Osan-cheon and Gonjiamcheon, the tributaries that flow into the main stream, resulting in respective increases or decreases in T-N concentration in the main stream. The nitrate and boron isotope ratios indicated that the nitrogen in all samples originated from manure. Mechanisms for nitrogen inflow from manure-related sources to the stream were suggested, including (1) manure from livestock wastes and rainfall runoff, (2) inflow through the discharge of wastewater treatment plants, and (3) inflow through the groundwater discharge (baseflow) of accumulated nitrogen during agricultural activities. Ultimately, water quality management of the Gyeongan stream basin requires pollution source management at the sub-basin level, including its tributaries, from a regional context. To manage the pollution load effectively, it is necessary to separate the hydrological components of the stream discharge and establish a monitoring system to track the flow and water quality of each component.

Effect of Cropping System and Application of Cattle Slurry on Forage Production and Environmental Pollution in Paddy Land (논에서 경작형태와 우분액비 시용이 사초생산성 및 환경오염에 미치는 영향)

  • Choi, Ki-Choon;Na, Sang-Pil;Kim, Won-Ho;Choi, Gi-Jun;Kim, Young-Chul;Kim, Myeong-Hwa;Lee, Sang-Lak;Kim, Da-Hye;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.32 no.3
    • /
    • pp.309-316
    • /
    • 2012
  • This study was performed to investigate the effects of forage cropping system and cattle slurry on productivity of whole crop rice, whole crop barley and Sorghum-Sudangrass hybrid and environmental pollution in paddy land. Forage cropping system used in this study was consisted of double-cropping whole crop barley followed by whole crop rice applied with cattle slurry (DWBRC) and double-cropping whole crop barley followed by Sorghum-Sudangrass hybrid applied with cattle slurry (DSSBC). The field experiments were conducted on the clay loam at Backsanmyun, Kimje, Chunlabukdo province in Korea for three years (May 2006 to Apr. 2009). This study was arranged in completely randomized design with three replicates. The field had been sown with whole crop rice 'Nampyung', Sorghum-Sudangrass hybrid 'Sordan79' and whole crop barley 'Younyang'. The yields of whole crop barley in DWBRC and DSSBC were 7,515 kg/ha and 8,515 kg/ha, respectively. The yields of whole crop barley in DSSBC significantly increased as compared with that of DWBRC (p<0.05). The contents of crude protein, neutral detergent fiber (NDF), acid detergent fiber (ADF), total digestible nutrient (TDN) of whole crop barley in DWBRC were not difference as compared with those of DSSBC. The pH, and contents of total nitrogen and organic matter in soil samples collected at the end of the experiment increased as compared with those at the beginning of the experiment (p<0.05). However, The content of phosphate in DWBRC was no difference as compared with DSSBC. In addition, after the end of experiment, the concentrations of exchangeable cations (Ca, Na, Mg and K) in soil samples collected at the end of the experiment were remarkably higher than those at the beginning of the experiment (p<0.05). The concentrations of $NH_4$-N, $NO_3$-N, $PO_4$-P, Cl, Ca, K, Mg and Na in leaching water were hardly influenced by the cropping system and application of cattle slurry.

Nitrogen Removal Rate of A Subsurface Flow Treatment Wetland System Constructed on Floodplain During Its Initial Operating Stage (하천고수부지 수질정화 여과습지의 초기운영단계 질소제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.4
    • /
    • pp.278-283
    • /
    • 2003
  • This study was carried out to examine the nitrogen removal rate of a subsurface-flow treatment wetland system which was constructed on floodplain of the Kwangju River from May to June 2001. Its dimensions were 29m in length, 9m in width and 0.65m in depth. A bottom layer of 45cm in depth was filled with crushed granite with about $15{\sim}30\;mm$ in diameter and a middle layer of 10cm in depth had pea pebbles with about 10 mm in diameter. An upper layer of 5 cm in depth contained course sand. Reeds (Phragmites australis) were transplanted on the surface of the system. They were dug out of natural wetlands and stems were cut at about 40 cm height from their bottom ends. Water of the Kwangju River flowed into it via a pipe by gravity flow and its effluent was funneled back into the river. The height of reed stems was 44.2 cm in July 2001 and 75.3cm in September 2001. The number of stems was increased from $80\;stems/m^2$ in July 2001 to $136\;stems/m^2$ in September 2001. Volume and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 40.0 and $39.2\;m^3/day$, respectively. Hydraulic detention time was about 1.5 days. Average nitrogen uptake by reeds was $69.31\;N\;mg/m^2/day$. Removal rate of $NO_3-N$, $NH_3-N$, T-N averaged 195.58, 53.65, and $628.44\;mg/m^2/day$, respectively. Changes of $NO_3-N$ and $NH_3-N$ abatement rates were closely related to those of wetland temperatures. The lower removal rate of nitrogen species compared with that of subsurface-flow wetlands operating in North America could be attributed to the initial stage of the system and inclusion of two cold months into the six-month monitoring period. Increase of standing density of reeds within a few years will develop both root zones suitable for the nitrification of ammonia and surface layer substrates beneficial to the denitrification of nitrates into nitrogen gases, which may lead to increment in the nitrogen retention rate.