• Title/Summary/Keyword: 질량 불평형

Search Result 55, Processing Time 0.022 seconds

Balancing of Rotors (ISO/TC108/SC1) (ISO/TC108/SC1 (회전체의 평형잡기))

  • 전오성;최상규;김민호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.282-283
    • /
    • 1998
  • ISO/FDIS 11342: 1998(E)에서, "회전체 밸런싱의 목표는, 기계 설치후 만족스런 운전(satisfactor running)을 이루는 것이다. '만족스러운 운전'이란, 회전체에 잔류하는 불평형 질량에 기인한 진동이 진동허용치(acceptable magnitude of vibration)를 넘지 않는 것을 의미한다"고 밸런싱을 설명한다. ISO/TC108(Mechanical vibration and Shock)의 Subcommittees 중 SC1은 'balancing, including balancing machines'라는 소그룹명을 갖고 있다. 이 SC에서는 회전체 밸런싱에 관련한 ISO의 제정과 개정의 일을 한다. 1998년 현재 위 위원회를 통하여 새롭게 개정된 ISO/FDIS 11342:1998(E)과 현재 개정 마무리 단계에 있는 ISO/DIS 2953을 간략히 소개한다.

  • PDF

A Study on Dynamic Characteristics of the Optical Disk Drive with Rubber Mount Absorber (흡진기 부착 광디스크 드라이브의 동특성 연구)

  • 강봉진;신효철;정태은
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.580-584
    • /
    • 1997
  • As the optical disk drive is getting applied to wider ranges, higher density of media and higher velocity of spindle motor are demanded and therefore its design criterion is becoming more strict. Especially, the vibration problem is one of the most important factors to be considered for reliable performance. In this study, the possibility of the application of the vibration absorber using rubber mount was investigated by 3 dimensional modeling and analysis by Recurdyn program. The model chosen was a vibration absorber using rubber mount installed on the sled base of the optical disk drive.

  • PDF

Examination of the Intermittent High Vibration by the Accumulated Carbide at Oil Deflector of a Steam Turbine for Power Plant (발전용 증기터빈의 Oil Deflector부 탄화물 퇴적에 의한 간헐적 고진동 현상 규명)

  • 양승헌;박철현;김재실;하현천
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.190-195
    • /
    • 2002
  • The intermittent high vibration has been occurred one or two times a day for a 500MW large steam turbine during 5 months. This abnormal vibration was caused by the rubbing between the rotor and the carbide accumulated on the seal tooth of oil deflector. It was found that the accumulated carbide was insulation material installed on the HIP casing from the examination of the chemical composition. Also, this paper presents the mechanism of the intermittent high vibration and the proper method to eliminate this vibration problem. This result would be good practice to find the solution of similar high vibration in the steam turbines for power plant as well as industrial rotating machineries.

  • PDF

Torque and Speed Characteristics of a Direct-Drive Slotless Synchronous Motor considering Mass Eccentricity (질량 불평형을 고려한 직접구동 슬롯리스형 동기전동기의 토크 및 속도특성)

  • Ahn, Ho-Jin;Kang, Gyu-Hong;Hong, Jung-Pyo;Kim, Gyu-Tak;Park, Jung-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2001.04a
    • /
    • pp.135-137
    • /
    • 2001
  • In slotless synchronous motor for precise position and speed control, eccentricity of rotor mass cause torque ripple, speed ripple and harmonics of back emf. This paper deals with magnetic field and characteristic analysis for ring type slotless synchronous motor by using analytical method. And then, speed and back emf harmonics are analysed.

  • PDF

A Study on the Steering Wheel Vibration affected by the Fastening Torque of the Wheel Mounting Hub Bolts of Steel Wheels (스틸휠의 체결력에 따른 조향휠 진동에 관한 연구)

  • 안세진;정의봉;유완석;김명규
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.189-195
    • /
    • 2003
  • The steel wheels are widely used in the passenger cars because of their low cost of production although the aluminum wheels have many advantages in their performance and appearance. It is known that the steering wheel vibration with steel wheels is generated more often than one with aluminum wheels. Both the constant velocity driving test and the m up test are carried out in this study to analyze the causes and path of the steering wheel vibration generated from the steel wheels. And this study shows that the steering wheel vibration is affected by the fastening torque of the wheel mounting bolts between the steel wheel and the suspension disk.

Examination of the Periodic High Vibration by the Accumulated Carbide at Oil Deflector of a Steam Turbine for Power Plant (발전용 증기터빈의 Oil Deflector부 탄화물 퇴적에 의한 주기적 고진동 현상 규명)

  • 양승헌;박철현;김재실;하현천
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.897-903
    • /
    • 2002
  • The periodic high vibration has been occurred one or two times a day for a 500 MW large steam turbine during 5 months. This abnormal vibration was caused by the rubbing between the rotor and the carbide accumulated on the seal tooth of oil deflector. It was found that the accumulated carbide was insulation material installed on the HIP casing from the examination of the chemical composition. Also, this paper presents the mechanism of the periodic high vibration and the proper method to eliminate this vibration problem. This result would be good practice to find the solution of similar high vibration in the steam turbines for power plant as well as industrial rotating machineries.

Dynamic Balancing in a Link Motion Punch Press (링크모션 펀치프레스의 다이나믹 발란싱)

  • Suh, Jin-Sung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.415-426
    • /
    • 2007
  • In a link motion punch press, numerous links are interconnected and each link executes a constrained motion at high speed. As a consequence, dynamic unbalance force and moment are transmitted to the main frame of the press, which results in unwanted vibration. This degrades productivity and precise stamping work of the press. This paper presents an effective method for reducing dynamic unbalance in a link motion punch press based upon kinematic and dynamic analyses. Firstly, the kinematic analysis is carried out in order to understand the fundamental characteristics of the link motion mechanism. Then design variable approach is presented in order to automate the model setup for the mechanism whenever design changes are necessary. To obtain the inertia properties of the links such as mass, mass moment of inertia, and the center of mass, 3-dimensional CAD software was utilized. Dynamic simulations were carried out for various combinations of design changes on some links having significant influences on kinematic and dynamic behavior of the mechanism.

Improving Dimensional Accuracy of Micropatterns by Compensating Dynamic Balance of a Roll Mold (롤금형의 동적밸런스 보정을 통한 미세패턴 형상정밀도 향상)

  • Lee, Dong-Yoon;Hong, Sang-Hyun;Song, Ki-Hyeong;Kang, Eun-Goo;Lee, Seok-Woo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.1
    • /
    • pp.33-37
    • /
    • 2011
  • In the fields of display, optics, and energy, it is important to improve micropattern-machining technology for achieving small patterns, large surface areas, and low cost. Unlike flat molds, roll molds have the following advantages: they can be manufactured within a short time, larger surface areas can be obtained, and continuous molding can be achieved. In this study, we aim to investigate the causes for errors in the shapes for a micropattern-machining process, and we show that by compensating the dynamic balance of roll molds, the dimensional accuracy of machined parts can be improved. The experimental results show that dynamic-balance compensation for a roll mold reduced the mass unbalance and the vibrations of the roll mold, and as a result, the dimensional accuracy of machined micropatterns has been improved.

The Performance Analysis of the Parameter Extracting Technique for the Vibration Monitoring System in High Voltage Motor (고압전동기용 진동 감시 시스템의 계수 추출기법 성능 분석)

  • Park, Jung-Cheul;Lee, Dal-Ho
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.12 no.5
    • /
    • pp.529-536
    • /
    • 2019
  • In this paper, the signals of the sensor for extracting characteristic parameters of the rotor are collected and the performance of the extraction technique is analyzed. To this end, a vibration test league was developed for conducting model tests to analyze the signal characteristics under normal operation. As a result, it is judged that no change in the measured the raw data amplitude will occur in the acceleration sensor with the unbalanced mass measured from the acceleration sensor. Performing FFT showed a significant increase in amplitude of the rotational frequency of 20 Hz as the unbalanced mass increased. The analysis results according to the change in the unequal mass of the speed sensor also showed a significant increase in the 1X Harmonics component, such as the acceleration sensor. There was no change in the amplitude of the acceleration sensor data when the misalignment occurred, and for the Envelope data, the amplitude of 2X (40 Hz) was increased depending on the degree of misalignment. The velocity sensor at change of misalignment also showed similar results to the acceleration sensor, and the peak was reduced at 600 Hz as the load increased in the frequency spectrum.

A Study on the Turbopump Rotordynamic Characteristics due to Bearing Housing Structural Flexibility (베어링 하우징의 구조 유연성에 따른 터보펌프 회전체동역학 특성 연구)

  • Jeon, Seong Min;Yoon, Suk-Hwan;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.2
    • /
    • pp.35-41
    • /
    • 2014
  • A rotordynamic analysis is performed for a turbopump of 7 ton class liquid rocket engine considering bearing housing structural flexibility. Stiffness and damping characteristics of ball bearings and pump noncontact seals are reflected in a rotordynamic model. A dynamic model of bearing housing with lumped mass and stiffness is also applied to the rotordynamic analysis. Rotor critical speed and onset speed of instability are predicted from synchronous rotor mass unbalance response and complex eigenvalue analyses. The bearing housing structural flexibility effect on rotordynamic characteristics is investigated for both of bearing loaded and unloaded conditions respectively. From the numerical analysis, it is found that the effect of the housing structural flexibility significantly reduces the rotor critical speed and onset speed of instability.