• Title/Summary/Keyword: 질량센서

Search Result 113, Processing Time 0.029 seconds

Quantitative Alpha Fetoprotein Detection with a Piezoelectric Microcantilever Mass Sensor (압전 마이크로캔틸레버 질량센서를 이용한 정량적 알파태아단백 검출)

  • Lee, Sangk-Yu;Cho, Jong-Yun;Lee, Yeol-Ho;Jeon, Sang-Min;Cha, Hyung-Joon;Moon, Wonk-Yu
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.5
    • /
    • pp.487-493
    • /
    • 2011
  • Alpha fetoprotein(AFP), which is serological marker for hepatocellular carcinoma, was quantitatively measured by its normal concentration, 10 ng/ml, with a label-free piezoelectric microcantilever mass sensor. The principle of detection is based on changes in the resonant frequency of the piezoelectric microcantilever before and after target molecules are attached to it, and its resonant frequency is measured electrically using a conductance spectrum. The resonant frequency of the developed sensor is approximately 1.34 MHz and the mass sensitivity is approximately 175 Hz/pg. The sensor has high reliability as mass sensor by reducing the effect of surface stress on resonant frequency due to attached proteins. 'Dip and dry' technique was used to react the sensor with reagents for immobilizing AFP antibody on the sensor and detecting AFP antigen. The measured mass of the detected AFP antigen was 6.02 pg at the concentration of 10 ng/ml, and 10.67 pg at 50 ng/ml when the immunoreaction time was 10 min.

Improvement in Sensitivity by Increasing the Frequency of SAW Sensors for DNA Detection (DNA 측정용 SAW 센서의 주파수 증대에 의한 감도향상)

  • Sakong, Jung-Yul;Kim, Jae-Ho;Lee, Soo-Suk;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.1
    • /
    • pp.42-47
    • /
    • 2007
  • In this paper. we have studied improvement in sensitivity by increasing the frequency of SAW sensors for detecting the immobilization and hybridization of DNA. The sensor consists of twin SAW delay lines operating at 200MHz, a sensing channel and a reference channel. fabricated on $36^{\circ}$ rotated Y-cut X-propagation $LiTaO_3$ crystals. The optimum concentration of probe and target DNA was decided for the improvement of detection mechanism. and digital syringe pump system was used to reduce the human errors. The hybridization between immobilized probe DNA and target DNA on the gold-coated delay line results in mass loading on the delay line of the sensing channel. Thus, the relative frequency change was monitored in relation to the mass loading. The measurement results showed a good response of the sensor to the DNA hybridization with a maximum sensitivity level up to 0.066ng/m1/Hz.

Graphene xylophone: physics and applications

  • Kim, Hak-Seong;Yun, Ho-Yeol;McAllister, Kirstie;Sin, Dong-Hun;Lee, Sang-Uk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.99.2-99.2
    • /
    • 2016
  • 본 발표에서는 공중에 떠있는 그래핀 기반 나노전기역학 시스템 (NEMS)의 기본 물성과 응용 방법에 대해 소개하고자 한다. 단겹 그래핀을 리본형태로 패턴하고 마이크로 전사기술을 통해 공중에 띄우는 공정을 이용한 그래핀 NEMS 소자 제작 방법을 먼저 소개하고 우리 연구그룹에서 지금까지 측정한 이 구조의 기본 역학적 물성 연구 결과를 소개한다. 미세 질량이 공중에 매달린 그래핀에 더해짐에 따라 역학적 공명 주파수가 줄어드는 현상을 이용하여 그래핀 기반 초미세 질량 센서 응용 방법에 대해 먼저 말하고 이후 같은 구조로 역학적 공명주파수를 이용한 RF 소자 응용 가능성에 대해서 이야기 하고자 한다. 마지막으로 다시 같은 구조를 통해 그래핀 자체에서 강한 가시광선이 발광되는 현상을 처음으로 발견한 내용에 대해 소개하고 이 현상에 대한 물리적 분석과 함께 응용 가능성을 제안하며 발표를 마무리하고자 한다.

  • PDF

Detection of Resonance Frequency of Micro Mechanical Devices Using Optical Method and Their Application for Mass Detection (광학적 방법을 통한 마이크로 역학 소자의 공진주파수 측정법과 이를 이용한 마이크로 캔티레버 공진기의 질량 변화 연구)

  • Kim, Hak-Seong;Lee, Sang-Wook
    • Journal of the Korean Vacuum Society
    • /
    • v.21 no.1
    • /
    • pp.36-40
    • /
    • 2012
  • We have developed the detection method of the resonance frequency of micro/nano mechanical resonator using optical method. The optical interferometery method enabled us to detect the displacement change of resonators within several nm scale. The micro mechanical resonator was produced by attaching a micro mechanical cantilever to a piezo ceramic. The mass of cantilever was increased by evaporating Au using electron beam evaporator and the mass variation was estimated by detecting the resonance frequency changes.

Novel Intensity-Based Fiber Optic Vibration Sensor Using Mass-Spring Structure (질량-스프링 구조를 이용한 새로운 광세기 기반 광섬유 진동센서)

  • Yi, Hao;Kim, Hyeon-Ho;Choi, Sang-Jin;Pan, Jae-Kyung
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.6
    • /
    • pp.78-86
    • /
    • 2014
  • In this paper, a novel intensity-based fiber optic vibration sensor using a mass-spring structure, which consists of four serpentine flexure springs and a rectangular aperture within a proof mass, is proposed and its feasibility test is given by the simulation and experiment. An optical collimator is used to broaden the beam which is modulated by the displacement of the rectangular aperture within the proof mass. The proposed fiber optic vibration sensor has been analyzed and designed in terms of the optical and mechanical parts. A mechanical structure has been designed using theoretical analysis, mathematical modeling, and 3D FEM (Finite Element Method) simulation. The relative aperture displacement according to the base vibration is given using FEM simulation, while the output beam power according to the relative displacement is measured by experiment. The simulated sensor sensitivity of $15.731{\mu}W/G$ and detection range of ${\pm}6.087G$ are given. By using reference signal, the output signal with 0.75% relative error shows a good stability. The proposed vibration sensor structure has the advantages of a simple structure, low cost, and multi-point sensing characteristic. It also has the potential to be made by MEMS (Micro-Electro-Mechanical System) technology.

BIACORE 바이오센서를 이용한 B형 간염 표면항원 정량분석의 기초연구

  • Yu, Chang-Hun;Ryu, Gang;Jeon, Jun-Yeong;Lee, Hyeon-Ik;Choe, Seong-Cheol;Lee, Eun-Gyu
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.231-234
    • /
    • 2001
  • We performed a basic experiment for rapid. on-line, real-time measurement of HBsAg by using a BIACORE biosensor, a chip-based sensor utilizing surface plasmon resonance technology to quantify the recognition and interaction of biomolecules. We immobilized an a -HBsAg antibody on a CM5 chip surface which was activated by N-hydroxysuccinimide for amine coupling with HBsAg, and measured the mass increase from the coupling. This study showed the potential of this biosensor-based method as a rapid, multi-sample, on-line assay. Once properly validated, it can serve as a more powerful method for HBsAg quantification.

  • PDF

Micro-Fabrication and Thermal Characteristics of a Thermal Mass Air Flow Sensor for Real-time Applications (고응답 열식 질량공기유량센서의 제작 및 열거동 특성)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.7
    • /
    • pp.542-548
    • /
    • 2008
  • A thermal mass air flow sensor (MAFS), which consists of a micro-heater and thermo-resistive sensors on the silicon-nitride ($Si_3N_4$) thin membrane structure, is micro-fabricated by MEMS processes. Two thermo-resistive temperature sensors are located at $100{\mu}m$ upstream and downstream from the micro-heater respectively. The thermal characteristics are measured to find the best measurement indicator. The micro-heater is operated under constant power condition, and four flow indicators are investigated. The normalized temperature indicator shows good physical meaning and is easy to use in practice. It is found that the configurations and heating power of thermal-resistive elements are the dominant factors to determine the range of the flow measurement in the MAFS with higher sensitivity and accuracy.

Study on an Acceleration Sensor using Magnetoelastic Effect of an Amorphous Wire (비정질 세선의 자기탄성 효과를 이용한 가속도 센서 개발에 관한 연구)

  • Cho, H.J.;Son, D.L.;Lim, S.J.;Yang, J.M.
    • Journal of Sensor Science and Technology
    • /
    • v.2 no.1
    • /
    • pp.11-17
    • /
    • 1993
  • We have constructed an acceleration sensor which is based on the maximum magnetic induction changes of amorphous wire as a measurand. The frequency bandwith of the constructed sensor depends on the mass of a sensing element. For $Co_{72.5}Si_{12.5}B_{15}$ amorphous wire, the bandwith is DC-700 Hz for $1{\times}10^{-3}kg$ sensing element and DC-200 Hz for $5{\times}10^{-3}kg$. The linearity of the acceleration sensor was less than 1% within the acceleration of 5 g.

  • PDF