• 제목/요약/키워드: 질감특징

검색결과 263건 처리시간 0.023초

질감 특징의 영상화 기법에 관한 연구 (The Study about Imaging Technique of Texture Features)

  • 이병일;최현주;최흥국
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 춘계학술발표논문집
    • /
    • pp.169-172
    • /
    • 2001
  • 영상의 특성 파악을 위해서 질감 특징이 많이 사용되고 있다 Co-occurrence matrix를 이용한 질감은 영상의 변화형태에 대한 수치자료로 다양한 함수들을 가지고 있으며, 영상의 특성에 따라서 그 함수들을 활용하여 영상의 분할과 분류에 사용하고 있다. 본 논문에서는 질감 특징을 시각화하기 위한 방법으로 GLCM의 로컬값을 새로운 픽셀값으로 하는 영상화 기법에 대해 논하였다. 실험을 통해 질감특징 중 대조적인 관계와 동일성을 가진 질감에 대한 영상을 얻을 수 있었으며, 영상 분석에 대한 시각적인 자료를 얻을 수 있었다. 질감특징은 각 항수별 특징값의 효율적인 사용을 위해 시각화되어질 필요성이 있으며 영상화되어진 질감특징영상을 이용하면 영상의 분석과 이해에 효과적인 접근이 가능하다.

  • PDF

색깔과 질감을 이용한 영역별 영상 검색 (Regional Image Retrieval by using Color and Texture)

  • 곽정원;조남익
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송공학회 2000년도 정기총회 및 학술대회
    • /
    • pp.137-142
    • /
    • 2000
  • 많은 정보를 포함하고 있는 영상 자료에서 빠른 검색과 분류를 위해서 색깔이나 질감 등의 특징을 나타내는 기술자가 필요하다. 또한 한 영상 안에서도 각 영역별로 다른 특징을 나타내고 있기 때문에 영역별 검색과 분류를 위한 영역 단위의 특징 추출이 중요하다. 본 논문에서는 색깔 특징으로 영역화된 영상의 각 영역에서 색깔 특징 벡터와 질감 특징 벡터를 추출하고 추출된 특징 벡터를 다른 영역에서 추출된 특징 벡터와의 거리를 이용하여 비슷한 특징을 보이는 영역을 검색한다. 기존의 전체 영상의 색깔이나 질감 어느 하나만을 이용한 검색과 달리 이러한 특징을 공간적 위치와 색깔, 질감을 조합하여 검색함으로써 보다 만족스러운 검색 결과를 얻을 수 있다.

  • PDF

질감특징들의 융합을 이용한 영상검색 (Image Retrieval Using the Fusion of Texture Features)

  • 천영덕;서상용;김남철
    • 한국통신학회논문지
    • /
    • 제27권3A호
    • /
    • pp.258-267
    • /
    • 2002
  • 본 논문에서는 저자 등이 질감특징으로 제안한 바 있는 BDIP(block difference of inverse probabilities) 모멘트 특징과 새로이 질감특징으로 제안하는 BVLC(block variation of local correlation coefficient) 모멘트 특징을 기존의 웨이브렛 모멘트 질감특징과 융합하여 칼라영상을 대상으로 검색하는 내용기반 검색법을 제시하였다. 효율적인 융합을 위해 각 특징벡터들에 대한 가중치는 전체 DB에서 각 특징벡터의 성분이 가지는 표준편차와 각 특징벡터가 가지는 차원과의 곱의 역수로 하였다. 시험영상으로는 Corel Draw Photo DB와 Vistex 질감영상 DB를 사용하였다. 실험결과, 제안한 검색기법은 일반영상뿐만 아니라 질감영상에서도 웨이브렛 모멘트 특징보다 7%정도 성능이 향상됨을 확인할 수 있었다.

웨이블릿 변환을 이용한 적응적 뇌영상 검색 방안 (Adaptative Retrieval Method for Brain Image using Wavelet)

  • 구혜영;엄기현
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 2001년도 추계학술발표논문집
    • /
    • pp.447-452
    • /
    • 2001
  • 내용 기반 이미지 검색에서 질감정보는 이미지의 검색 속성으로 사용할 수 있는 중요한 정보를 가지고 있다. 본 논문에서는 검색의 이미지 속성으로서 질감 특징을 사용한다. 의료영상 MRI 중 특히 뇌영상의 검색에서 질감의 특징은 전체 이미지를 대상으로 한 전역 질감 특징 값과 종양이나 뇌출혈 부분 등 정상이 아닌 이상객체 부분의 지역 질감 특징 값을 3단계 웨이블릿 변환을 통해 추출하고 추출된 여러 개의 특징 중 검색 효율성을 높일 수 있는 특징만을 선별하여 검색에 이용하는 방안을 제안한다.

  • PDF

가중치 특징 벡터를 이용한 질감 영상 인식 방법 (Texture Classification by a Fusion of Weighted Feature)

  • 정수연;곽동민;윤옥경;박길흠
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 제14회 신호처리 합동 학술대회 논문집
    • /
    • pp.407-410
    • /
    • 2001
  • 최근 영상 검색(retrieval)과 분류(classification)에서 질감 특징(texture feature)을 이용한 연구들이 활발하게 진행되고 있다. 본 논문에서는 효율적인 질감 특징 추출을 위해 명암도 상호발생 행렬법(gray level co-occurrence matrix)과 웨이블릿 변환(wavelet transform)을 이용하여 질감의 특징을 추출한 후 특징의 중요도에 따라서 가중치를 부여하는 방법을 제안한다. 이렇게 추출된 가중치 대표 벡터들을 기반으로 베이시안 분류기(Bayesian classifier)를 통해 임의의 질감을 인식하였다.

  • PDF

폐기종 질환 판별을 위한 명암도와 CS-LBP를 결합한 질감 특징 추출 (Texture Feature Extraction Combining Gray Level and CS-LBP to Detect Emphysema Disease)

  • 박민욱;팽소호;뮤잠멜;김덕환
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2010년도 한국컴퓨터종합학술대회논문집 Vol.37 No.1(C)
    • /
    • pp.480-483
    • /
    • 2010
  • 환자의 흉부 CT 영상을 이용하여 폐 영역의 질환을 진단하는 컴퓨터 조력 진단(CAD) 시스템은 질감 특징을 이용한다. 질환의 질감 특징 추출은 매우 중요하다. 질감 특징 추출은 폐 질환을 분석하기 위한 좋은 방법 중의 하나이기 때문이다. 본 논문에서는 폐기종 질환을 판별하기 위해 명암도와 CS-LBP를 결합한 질감 특징 추출 방법을 제안한다. 입력된 흉부 CT 영상은 몇 단계의 전처리 과정을 거치고 제안한 방법을 통해 질감 특징 추출을 하게 된다. 그리고 분류기에 의해 폐기종을 분류해 질환을 판별하게 된다. 실험 결과에서는 제안한 방법이 현존하는 방법 중 가장 좋은 성능을 보이는 GLLBP보다 더 좋은 성능을 보여준다.

  • PDF

웨이브릿 변환에 기반한 색상과 질감 특징을 이용한 이미지 검색 시스템 (Image Retrieval System Using Color and Textural Feature Based on Wavelet Transform)

  • 서상환;이연숙;김상균;김흥식
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1999년도 가을 학술발표논문집 Vol.26 No.2 (1)
    • /
    • pp.30-32
    • /
    • 1999
  • 내용 기반 이미지 데이터베이스의 검색을 위해서 low-level 특징에 기반한 방법들이 연구되고 있다. 본 논문에서는 웨이브릿 변환에 기반한 색상과 질감 특징을 이용한 내용기반 이미지 검색 시스템을 제안한다. 다양한 색상 정보로부터 추출한 인덱스 키와 웨이브릿 변환에 의해 추출한 질감 특징을 통계적 확률 분석 방법에 적용시킨 검색 시스템이다. 이러한 색상과 질감에 대한 효과적인 조합으로 보다 효율적이고 정확성 높은 결과를 도출함을 실험을 통하여 제시한다.

  • PDF

질감특성을 이용한 차종 식별에 관한 연구 (A Study on Classification of Types of Vehicles using Texture Features)

  • 김경욱;이효종
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.737-740
    • /
    • 2004
  • 본 논문에서는 차종 식별을 위해 차량 영상의 질감 특징을 사용하였다. 차량의 질감 특징 정보를 얻기 위한 관심영역으로 라디에이터 그릴 부분을 선택하였다. 추출된 관심영역으로부터 GLCM(Gray Level Co-occurrence Matrix)을 사용하여 질감 특징 값을 추출하였고, 그 특징 값들을 입력으로 취하는 3층의 신경회로망을 구성한 후 역전파 학습 알고리즘을 사용하여 학습을 시켜서 차종 식별을 시도하였다.

  • PDF

색상과 질감정보의 적응적 가중치 기법을 이용한 내용기반 영상검색 (Content-based Image Retrieval using adaptive weight of Color and texture information)

  • 황춘화;김계영;최형일
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2011년도 제43차 동계학술발표논문집 19권1호
    • /
    • pp.39-42
    • /
    • 2011
  • 본 논문에서는 영상들의 특징들을 추출하여 특징 값들의 비교를 통하여 질의 영상의 유사 영상을 검색하는 방법을 제안한다. 제안하는 방법은 입력 영상들의 색상 히스토그램으로 색상 특징 값들을 추출하고 질감 정보인 에지 정보와 이웃화소간의 공간 관계를 분석하여 질감 특징 값들을 추출하여 저장한 후 질의 이미지의 색상과 질감 특징들을 구하여 비교를 통하여 유사도를 분석하고 결과 영상을 보여준다. 또한 색상과 질감을 혼합하여 사용할 때 적응적으로 가중치를 부여함으로써 가중치가 적합하지 않아 발생하는 오 검출될 현상을 피할 수 있게 되었다. 실험을 통하여 기존의 방법과의 성능을 비교분석하였고 본 방법의 우수성을 입증하였다.

  • PDF

SGLDM을 이용한 문서영상의 블록 분류 (Block Classification of Document Images Using the Spatial Gray Level Dependence Matrix)

  • 김중수
    • 한국멀티미디어학회논문지
    • /
    • 제8권10호
    • /
    • pp.1347-1359
    • /
    • 2005
  • 본 논문에서는 공간 명암도 의존 행렬을 이용하여 문서영상의 다양한 블록들을 상세하게 분류해 낼 수 있는 방법을 제안하였다. 제안한 블록분류 방법에서는 먼저 명암도 문서영상을 이진화하여 평활화 기법을 적용함으로써 명암도 영상의 질감특징을 이용하여 분할하는 것보다 신속하게 블록을 분할하고 동시에 그 위치정보도 구할 수 있도록 하였다. 분할된 각 블록들의 공간 명암도 의존 행렬로부터 문서블록들의 7가지 질감특징을 구하고, 이를 정규화한 다음 역전파 신경회로망를 이용하여 문서블록들을 분류하였다. 문서블록들을 큰 문자, 중간 문자, 작은 문자, 표, 그래픽 및 사진 등 여섯 가지 유형으로 상세 분류하였다. 또한 명암도 문서영상의 2차 통계 질감특징을 얻기 위해 공간 명암도 의존 행렬을 구할 때, 기존의 사진과 같은 일반 영상분할에서와는 달리, 문서블록 고유의 특징이 잘 반영되도록 하였다. 즉, 분할된 각 블록을 하나의 마스크로 정하여 수평 한 방향의 공간 명암도 의존 행렬을 구함으로써 고속의 질감특징추출과 상세 블록분류가 가능하도록 하였다.

  • PDF