본 논문에서는 인공생명의 연구와 더불어 최근 행해지고 있는 진화의 발생에 기반을 둔 신경망의 설계방법에 대하여 알아보고, 이렇게 생성된 신경망의 특징 및 앞으로의 발전 가능성을 알아본다. 또한 기초적인 연구결과로서 셀룰라 오토마타와 진화연산을 결합한 신경망의 설계방법을 제안한다. 제안한 방법은 셀룰라 오토마타를 이용해 세포의 발생과정을 모델링 하였고 진화를 통하여 원하는 구조의 신경망을 얻어낸다. 신경망을 발생모델로 설계함으로 생기는 이점은 신경망의 크기가 커지더라도 복잡성이 증가하지 않는다는 것이다. 따라서 궁극적으로 인공 뇌와 같이 고도로 복잡한 시스템의 개발을 가능하게 한다.
본 논문은 진화형 하드웨어를 이용하여 생물의 정보처리 시스템인 셀룰라 오토마타 신경망의 구현에 관한 연구이다. 셀룰라 오토마타 신경망은 진화 및 발생을 기반으로 한 신경망 모델이다. 진화는 다양성을 주요 근원을 제공하는 돌연변이 및 재 조합 비율에 의하여 비결정론이며, 발생은 결정론 적이며 지역적인 무리현상을 따른다. 셀룰라 오토마타 신경망은 셀룰라 오토마타에 의해 신경망 내부의 각 셀의 상태를 발생시키고, 초기 셀을 유전자 알고리즘의 개체로 간주하여 초기 셀이 진화 알고리즘을 통해 진화함으로써 신경망이 진화하는 시스템이다. 본 논문은 이 시스템을 진화형 하드웨어 이용하여 하드웨어로 구현하였다. 진화형 하드웨어는 진화 알고리즘과 재구성하드웨어의 결합체이다. 즉, 재구성 하드웨어의 구성에 필요한 bit를 유전자 알고리즘의 개체로 간주한 것이다. 진화 알고리즘을 수행하기 위해 유전자 알고리즘 프로세서를 설계하였으며, 셀룰라 오토마타 신경망이 유전자 알고리즘의 개체와 셀룰라 오토마타 룰에 의해 자동적으로 신경망을 생성하기 위해 신경망을 이루는 셀들로 설계하였다. 제안된 시스템의 효율성을 검증하기 위해 Exclusive-OR 문제에 적용하였다.
진화하는 인공신경망은 인공지능분야와 게임 NPC의 지능 설계 분야에서 새롭게 각광을 받고 있다. 하지만 진화하는 인공신경 망을 이용하여 게임 NPC의 지능을 설계할 때 인공신경 망의 구조가 복잡함에 따라 진화와 평가에 필요한 연산량이 크며 또한 적절한 적합도 함수를 설계하지 못하면 지능적인 NPC를 설계할 수 없는 등의 문제점을 가지고 있다. 본 논문에서는 이러한 문제들을 해결하고자 동적 상태 진화 인공신경망을 제안한다. 동적 상태 진화 인공신경망은 전통적인 진화하는 인공신경망 알고리즘에 기반하여 진화 과정에서 신경망의 신경세포들 사이의 시냅스를 제거(disabled) 하거나 고정(fixed)시키는 방법을 통하여 진화와 평가과정에 소모되는 연산량을 줄이는 알고리즘이다. 본 논문은 Darwin Platform 을 테스트 베드로 축구게임 NPC의 지능 설계를 통하여 제안하는 방법의 유용성을 검증한다.
시스템 호출 감사자료기반 기계학습기법을 사용한 프로그램 행위 학습방법은 효과적인 호스트기반 침입탐지 방법이며, 특히 신경망은 기존 연구 중 가장 좋은 성능을 보였다. 하지만 보통의 신경망은 그 구조를 찾기 위한 방법이 알려져 있지 않아 침입탐지에 효과적인 구조를 찾기 위해서는 많은 시간이 요구된다. 본 논문에서는 기존 신경망 기반 침입탐지시스템의 단점을 보완하고 성능을 향상시키기 위해 진화신경망을 이용한 방법을 제안한다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하기 때문에 일반 신경망보다 빠른 시간 내에 더 좋은 성능의 신경망을 얻을 수 있다는 장점이 있다. 1999년의 DARPA IDEVAL자료로 실험한 결과 기존의 연구보다 좋은 성능을 보여 진화신경망이 침입탐지에 효과적임을 확인할 수 있었다.
기존 진화 신경망 연구는 마지막 세대에서 최적의 신경망을 찾는 연구가 대부분이었다. 하지만 이 방법은 마지막 세대의 다른 신경망들이 진화와 학습을 통해 얻은 정보를 모두 무시한다. 최근에는 가능한 많은 정보를 이용해서 보다 뛰어난 성능의 시스템을 구축하기 위해, 마지막 세대의 모든 신경망들의 정보를 결합하는 다중 신경망에 관한 연구가 진행되고 있다. 효과적인 다중 신경망을 구축하기 위해서는 다양한 신경망들이 다중 신경망을 구성해서 서로 보완해 주도록 하여야 하는데, 아직까지 효과적인 다중 신경망 구축 방법은 나오지 않고 있다. 본 연구는 유전자 연산에서 다양한 해를 찾기 위해 사용하는 종분화를 이용해서 다양한 신경망들이 생성되도록 하는 다중 신경망 구축방법을 제안하고 실험을 통해 이 방법의 효용성을 보인다.
진화 신경망은 기존의 경험적 지식 대신에 진화 알고리즘의 전역 탐색 능력을 사용해서 최적의 신경망을 찾는다. 하지만 실세계의 복잡한 문제는 하나의 신경망으로 해결하기 어려운 경우가 많기 때문에 최근에 하나 이상의 신경망을 결합한 다중 신경망에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 진화과정 중 상호보완 가능한 다양한 신경망을 얻기 위한 종분화 방식을 제안한다. 또한 적합도 공유를 통해 종분화된 진화 신경망의 결과를 효과적으로 결합하기 위해 추상 레벨, 순위 레벨, 측정치 레벨의 여러 결합 방법을 이용한 다중 신경망 시스템을 개발한다. UCI 데이터베이스의 벤치마크 문제 중 호주 신용카드 승인 데이터에 대하여 실험한 결과, 종분화를 사용해 탐색한 신경망을 결합한 경우는 더 높은 인식률을 보였으며 Borda 결합의 경우 0.105의 오류율을 보여 제안한 방법이 효과적임을 알 수 있었다.
모듈형 신경망은 인간의 정보처리 시스템이 고유한 목적이나 기능을 가진 모듈로 되어있다는 신경과학의 연구에 기반하여 제안된 모델이다. 하지만 모듈의 크기와 기능모듈간의 연결구조를 결정하는데 큰 어려움이 있다. 본 논문에서는 간단한 규칙으로 복잡한 구조를 생성해 낼 수 있는 린덴마이어-시스템을 이용하여 모듈형 신경망의 크기 및 연결구조를 만들어내는 과정에 대하여 고찰해본다. 또한, 신경망의 생성규칙을 유전자형으로 표현하고 진화 알고리즘을 적용하여 주어진 문제를 해결할 수 있는 최적의 규칙을 찾아내는 방법을 제안한다. 본 논문에서 제안한 유전자형과 진화연산은 최적화된 문법규칙 및 신경망의 구조를 만들어 낼 수 있는 가능성을 보여준다.
시스템 호출 감사자료기반 기계학습기법을 사용한 프로그램 행위 학습방법은 효과적인 호스트 기반 침입탐지 방법이며, 규칙 학습, 신경망, 통계적 방법, 은닉 마크로프 모델 등의 방법이 대표적이다. 그 중에서 신경망은 시스템 호출 시퀀스를 학습하는데 있어 적합하다고 알려져 있는데, 실제 문제에 적용하여 좋은 성능을 내기 위해서는 그 구조를 결정하는 것이 중요하다 하지만 보통의 신경망은 그 구조를 찾기 위한 방법이 알려져 있지 않아 침입탐지에 효과적인 구조를 찾기 위해서는 많은 시간이 요구된다. 본 논문에서는 기존 신경망 기반 침입탐지시스템의 단점을 보완하고 성능을 향상시키기 위해 진화신경망을 이용한 방법을 제안한다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하기 때문에 일반 신경망보다 빠른 시간에 더 좋은 성능의 신경망을 얻을 수 있다는 장점이 있다. 1999년의 DARPA IDEVAL 자료로 실험한 결과 기존의 연구보다 좋은 탐지율을 보여 진화신경망이 침입탐지에 효과적임을 확인할 수 있었다.
본 논문에서는 BNN, 블록기반 신경망 모델을 재구성가능 하드웨어(FPGA)로 설계한다. 블록기 반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬 수 있다. 블록기반 신경망의 구조와 가중치를 표현하는 바이너리 스트링을 오프라인으로 진화시킨 후, 재구성가능 하드웨어로 구현한다. FPGA로 구현된 블록기반 신경망의 성능을 확인하기 위하여 간단한 성능시험에 사용되는 대표적인 패턴들을 사용하여 블록기반 신경망의 패턴분류 성능을 알아본다.
본 논문에서는 진화연산을 이용하여 동적 귀환 신경망의 구조를 저차원화하는 방법을 제안한다. 일반적으로 진화연산을 개체군을 이용한 탐색 방법으로서 신경회로망의 여러 가지 다른 성질을 동시에 최적화할 필요가 있을 때 유용한 방법이다. 본 연구에서는 동적 귀환 신경망의 구조를 조차원화하기 위하여 진화 프로그래밍으로 신경망의 구조를 탐색하고, 진화전략으로 신경망의 연결강도를 학습시킴으로서 전체적인 구조를 저차원화하였다.신경망의 중간층 노드의 추가/삭제는 돌연변이 확률에 의하여 결정한다. 노드를 삭제할 경우에는 입력 연결강도의 총합이 가장 작은 노드를 삭제하고, 노드를 추가할 경우에는 미리 지정한 확률함스에 따라 노드를 추가한다. 그리고 추가된 노드와 다른 노드와의 연결방법은 서로 영향을 미칠 수 있는 모든 연결강도 중에서 확률적으로 선택하여 연결하였다. 마지막으로 제안한 저차원화 동적 귀환 신경망이 완전 연결된 신경망보다 더 좋은 성능을 얻을 수 있음을 예제로서 본 논문에서는 도립진자의 안정화 및 제어와 로봇 매니퓰레이터의 비주얼 서보잉에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.