• 제목/요약/키워드: 진화 신경망

검색결과 107건 처리시간 0.027초

신경망의 진화적 발생모델 (An Evolutionary Developmental Model of Artificial Neural Systems)

  • 이동욱;심귀보
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.324-326
    • /
    • 1998
  • 본 논문에서는 인공생명의 연구와 더불어 최근 행해지고 있는 진화의 발생에 기반을 둔 신경망의 설계방법에 대하여 알아보고, 이렇게 생성된 신경망의 특징 및 앞으로의 발전 가능성을 알아본다. 또한 기초적인 연구결과로서 셀룰라 오토마타와 진화연산을 결합한 신경망의 설계방법을 제안한다. 제안한 방법은 셀룰라 오토마타를 이용해 세포의 발생과정을 모델링 하였고 진화를 통하여 원하는 구조의 신경망을 얻어낸다. 신경망을 발생모델로 설계함으로 생기는 이점은 신경망의 크기가 커지더라도 복잡성이 증가하지 않는다는 것이다. 따라서 궁극적으로 인공 뇌와 같이 고도로 복잡한 시스템의 개발을 가능하게 한다.

  • PDF

FPGA를 이용한 진화형 하드웨어 설계 및 구현에 관한 연구 (A Study on Design of Evolving Hardware using Field Programmable Gate Array)

  • 반창봉;곽상영;이동욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제11권5호
    • /
    • pp.426-432
    • /
    • 2001
  • 본 논문은 진화형 하드웨어를 이용하여 생물의 정보처리 시스템인 셀룰라 오토마타 신경망의 구현에 관한 연구이다. 셀룰라 오토마타 신경망은 진화 및 발생을 기반으로 한 신경망 모델이다. 진화는 다양성을 주요 근원을 제공하는 돌연변이 및 재 조합 비율에 의하여 비결정론이며, 발생은 결정론 적이며 지역적인 무리현상을 따른다. 셀룰라 오토마타 신경망은 셀룰라 오토마타에 의해 신경망 내부의 각 셀의 상태를 발생시키고, 초기 셀을 유전자 알고리즘의 개체로 간주하여 초기 셀이 진화 알고리즘을 통해 진화함으로써 신경망이 진화하는 시스템이다. 본 논문은 이 시스템을 진화형 하드웨어 이용하여 하드웨어로 구현하였다. 진화형 하드웨어는 진화 알고리즘과 재구성하드웨어의 결합체이다. 즉, 재구성 하드웨어의 구성에 필요한 bit를 유전자 알고리즘의 개체로 간주한 것이다. 진화 알고리즘을 수행하기 위해 유전자 알고리즘 프로세서를 설계하였으며, 셀룰라 오토마타 신경망이 유전자 알고리즘의 개체와 셀룰라 오토마타 룰에 의해 자동적으로 신경망을 생성하기 위해 신경망을 이루는 셀들로 설계하였다. 제안된 시스템의 효율성을 검증하기 위해 Exclusive-OR 문제에 적용하였다.

  • PDF

동적 상태 진화 신경망에 기반한 팀 에이전트의 진화 (Evolving Team-Agent Based on Dynamic State Evolutionary Artificial Neural Networks)

  • 김향화;장동헌;김태용
    • 한국멀티미디어학회논문지
    • /
    • 제12권2호
    • /
    • pp.290-299
    • /
    • 2009
  • 진화하는 인공신경망은 인공지능분야와 게임 NPC의 지능 설계 분야에서 새롭게 각광을 받고 있다. 하지만 진화하는 인공신경 망을 이용하여 게임 NPC의 지능을 설계할 때 인공신경 망의 구조가 복잡함에 따라 진화와 평가에 필요한 연산량이 크며 또한 적절한 적합도 함수를 설계하지 못하면 지능적인 NPC를 설계할 수 없는 등의 문제점을 가지고 있다. 본 논문에서는 이러한 문제들을 해결하고자 동적 상태 진화 인공신경망을 제안한다. 동적 상태 진화 인공신경망은 전통적인 진화하는 인공신경망 알고리즘에 기반하여 진화 과정에서 신경망의 신경세포들 사이의 시냅스를 제거(disabled) 하거나 고정(fixed)시키는 방법을 통하여 진화와 평가과정에 소모되는 연산량을 줄이는 알고리즘이다. 본 논문은 Darwin Platform 을 테스트 베드로 축구게임 NPC의 지능 설계를 통하여 제안하는 방법의 유용성을 검증한다.

  • PDF

진화신경망을 이용한 프로그램 행위학습 및 비정상행위탐지 (Anomaly Detection and Learning of Program Behaviors with Evolutionary Neural Networks)

  • 한상준;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (A)
    • /
    • pp.262-264
    • /
    • 2004
  • 시스템 호출 감사자료기반 기계학습기법을 사용한 프로그램 행위 학습방법은 효과적인 호스트기반 침입탐지 방법이며, 특히 신경망은 기존 연구 중 가장 좋은 성능을 보였다. 하지만 보통의 신경망은 그 구조를 찾기 위한 방법이 알려져 있지 않아 침입탐지에 효과적인 구조를 찾기 위해서는 많은 시간이 요구된다. 본 논문에서는 기존 신경망 기반 침입탐지시스템의 단점을 보완하고 성능을 향상시키기 위해 진화신경망을 이용한 방법을 제안한다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하기 때문에 일반 신경망보다 빠른 시간 내에 더 좋은 성능의 신경망을 얻을 수 있다는 장점이 있다. 1999년의 DARPA IDEVAL자료로 실험한 결과 기존의 연구보다 좋은 성능을 보여 진화신경망이 침입탐지에 효과적임을 확인할 수 있었다.

  • PDF

적합도 공유에 의해 진화한 종분화 신경망 (Speciated Neural Networks Evolved by Fitness Sharing)

  • 안준현;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (2)
    • /
    • pp.12-14
    • /
    • 2000
  • 기존 진화 신경망 연구는 마지막 세대에서 최적의 신경망을 찾는 연구가 대부분이었다. 하지만 이 방법은 마지막 세대의 다른 신경망들이 진화와 학습을 통해 얻은 정보를 모두 무시한다. 최근에는 가능한 많은 정보를 이용해서 보다 뛰어난 성능의 시스템을 구축하기 위해, 마지막 세대의 모든 신경망들의 정보를 결합하는 다중 신경망에 관한 연구가 진행되고 있다. 효과적인 다중 신경망을 구축하기 위해서는 다양한 신경망들이 다중 신경망을 구성해서 서로 보완해 주도록 하여야 하는데, 아직까지 효과적인 다중 신경망 구축 방법은 나오지 않고 있다. 본 연구는 유전자 연산에서 다양한 해를 찾기 위해 사용하는 종분화를 이용해서 다양한 신경망들이 생성되도록 하는 다중 신경망 구축방법을 제안하고 실험을 통해 이 방법의 효용성을 보인다.

  • PDF

적합도 공유에 의해 종분화된 진화 신경망의 결합 (Fusion of Evolutionary Neural Networks Speciated by Fitness Sharing)

  • 안준현;조성배
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권1_2호
    • /
    • pp.1-9
    • /
    • 2002
  • 진화 신경망은 기존의 경험적 지식 대신에 진화 알고리즘의 전역 탐색 능력을 사용해서 최적의 신경망을 찾는다. 하지만 실세계의 복잡한 문제는 하나의 신경망으로 해결하기 어려운 경우가 많기 때문에 최근에 하나 이상의 신경망을 결합한 다중 신경망에 관한 연구가 활발히 진행되고 있다. 본 논문에서는 진화과정 중 상호보완 가능한 다양한 신경망을 얻기 위한 종분화 방식을 제안한다. 또한 적합도 공유를 통해 종분화된 진화 신경망의 결과를 효과적으로 결합하기 위해 추상 레벨, 순위 레벨, 측정치 레벨의 여러 결합 방법을 이용한 다중 신경망 시스템을 개발한다. UCI 데이터베이스의 벤치마크 문제 중 호주 신용카드 승인 데이터에 대하여 실험한 결과, 종분화를 사용해 탐색한 신경망을 결합한 경우는 더 높은 인식률을 보였으며 Borda 결합의 경우 0.105의 오류율을 보여 제안한 방법이 효과적임을 알 수 있었다.

린덴마이어-시스템의 진화를 통한 모듈형 신경망의 개발 (Development of Modular Neural Networks by Evolving Lindenmayer-System)

  • 이지행;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 1998년도 가을 학술발표논문집 Vol.25 No.2 (2)
    • /
    • pp.330-332
    • /
    • 1998
  • 모듈형 신경망은 인간의 정보처리 시스템이 고유한 목적이나 기능을 가진 모듈로 되어있다는 신경과학의 연구에 기반하여 제안된 모델이다. 하지만 모듈의 크기와 기능모듈간의 연결구조를 결정하는데 큰 어려움이 있다. 본 논문에서는 간단한 규칙으로 복잡한 구조를 생성해 낼 수 있는 린덴마이어-시스템을 이용하여 모듈형 신경망의 크기 및 연결구조를 만들어내는 과정에 대하여 고찰해본다. 또한, 신경망의 생성규칙을 유전자형으로 표현하고 진화 알고리즘을 적용하여 주어진 문제를 해결할 수 있는 최적의 규칙을 찾아내는 방법을 제안한다. 본 논문에서 제안한 유전자형과 진화연산은 최적화된 문법규칙 및 신경망의 구조를 만들어 낼 수 있는 가능성을 보여준다.

  • PDF

진화신경망을 이용한 효과적 인 침입탐지 (Effective Intrusion Detection using Evolutionary Neural Networks)

  • 한상준;조성배
    • 한국정보과학회논문지:정보통신
    • /
    • 제32권3호
    • /
    • pp.301-309
    • /
    • 2005
  • 시스템 호출 감사자료기반 기계학습기법을 사용한 프로그램 행위 학습방법은 효과적인 호스트 기반 침입탐지 방법이며, 규칙 학습, 신경망, 통계적 방법, 은닉 마크로프 모델 등의 방법이 대표적이다. 그 중에서 신경망은 시스템 호출 시퀀스를 학습하는데 있어 적합하다고 알려져 있는데, 실제 문제에 적용하여 좋은 성능을 내기 위해서는 그 구조를 결정하는 것이 중요하다 하지만 보통의 신경망은 그 구조를 찾기 위한 방법이 알려져 있지 않아 침입탐지에 효과적인 구조를 찾기 위해서는 많은 시간이 요구된다. 본 논문에서는 기존 신경망 기반 침입탐지시스템의 단점을 보완하고 성능을 향상시키기 위해 진화신경망을 이용한 방법을 제안한다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하기 때문에 일반 신경망보다 빠른 시간에 더 좋은 성능의 신경망을 얻을 수 있다는 장점이 있다. 1999년의 DARPA IDEVAL 자료로 실험한 결과 기존의 연구보다 좋은 탐지율을 보여 진화신경망이 침입탐지에 효과적임을 확인할 수 있었다.

FPGA에 의한 블록기반 신경망의 설계 (Hardware Design of Block-based Neural Networks Using FPGA)

  • 장정두;공성곤
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2998-3000
    • /
    • 2000
  • 본 논문에서는 BNN, 블록기반 신경망 모델을 재구성가능 하드웨어(FPGA)로 설계한다. 블록기 반 신경망은 재구성가능 하드웨어에 의하여 구현이 용이하고 구조 및 가중치의 최적화에 진화 알고리즘을 적용시킬 수 있다. 블록기반 신경망의 구조와 가중치를 표현하는 바이너리 스트링을 오프라인으로 진화시킨 후, 재구성가능 하드웨어로 구현한다. FPGA로 구현된 블록기반 신경망의 성능을 확인하기 위하여 간단한 성능시험에 사용되는 대표적인 패턴들을 사용하여 블록기반 신경망의 패턴분류 성능을 알아본다.

  • PDF

진화연산을 이용한 동적 귀환 신경망의 구조 저차원화 (Structure Pruning of Dynamic Recurrent Neural Networks Based on Evolutionary Computations)

  • 김대준;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제7권4호
    • /
    • pp.65-73
    • /
    • 1997
  • 본 논문에서는 진화연산을 이용하여 동적 귀환 신경망의 구조를 저차원화하는 방법을 제안한다. 일반적으로 진화연산을 개체군을 이용한 탐색 방법으로서 신경회로망의 여러 가지 다른 성질을 동시에 최적화할 필요가 있을 때 유용한 방법이다. 본 연구에서는 동적 귀환 신경망의 구조를 조차원화하기 위하여 진화 프로그래밍으로 신경망의 구조를 탐색하고, 진화전략으로 신경망의 연결강도를 학습시킴으로서 전체적인 구조를 저차원화하였다.신경망의 중간층 노드의 추가/삭제는 돌연변이 확률에 의하여 결정한다. 노드를 삭제할 경우에는 입력 연결강도의 총합이 가장 작은 노드를 삭제하고, 노드를 추가할 경우에는 미리 지정한 확률함스에 따라 노드를 추가한다. 그리고 추가된 노드와 다른 노드와의 연결방법은 서로 영향을 미칠 수 있는 모든 연결강도 중에서 확률적으로 선택하여 연결하였다. 마지막으로 제안한 저차원화 동적 귀환 신경망이 완전 연결된 신경망보다 더 좋은 성능을 얻을 수 있음을 예제로서 본 논문에서는 도립진자의 안정화 및 제어와 로봇 매니퓰레이터의 비주얼 서보잉에 적용하여 컴퓨터 시뮬레이션을 통하여 그 유효성을 확인한다.

  • PDF