• Title/Summary/Keyword: 진화적 최적화

Search Result 253, Processing Time 0.028 seconds

Genetic Algorithms based on Maintaining a diversity of the population for Job-shop Scheduling Problem (다양성유지를 기반으로 한 Job-shop Scheduling Problem의 진화적 해법)

  • 권창근;오갑석
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.3
    • /
    • pp.191-199
    • /
    • 2001
  • This paper presents a new genetic algorithm for job-shop scheduling problems. When we design a genetic algorithm for difficult ordering problems such as job-shop scheduling problems, it is important to design encoding/crossover that is excellent in characteristic preservation and to maintain a diversity of population. We used Job-based order crossover(JOX). Since the schedules generated by JOX are not always active-schedule, we proposed a method to transform them into active schedulesby using the GT method with c)laracteristic preservation. We introduce strategies for maintaining a diversity of the population by eliminating same individuals in the population. Furthermore, we are not used mutation. Experiments have been done on two examples: Fisher s and Thompson s $lO\timeslO and 20\times5$ benchmark problem.

  • PDF

A Quantative Evaluation Method of the Quality of Natural Language Sentences based on Genetic Algorithm (유전자 알고리즘에 기반한 자연언어 문장의 정량적 질 평가 방법)

  • Yang, Seung-Hyeon;Kim, Yeong-Seom
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.11
    • /
    • pp.1372-1380
    • /
    • 1999
  • 본 논문에서는 자연언어 문장의 객관적 정량적인 질 측정 방법의 구축에 대해 설명하고, 이를 문장 퇴고 시스템의 사례에 적용해 본다. 문장의 질을 평가한다는 것은 본질적으로 주관적이고 정량화가 어려운 작업이기 때문에, 이 과정에서 질의 객관적 계량화가 가능한지 여부가 가장 중요한 문제가 된다. 이 논문에서는 이러한 문제를 해결하기 위해 유전자 알고리즘을 이용한 진화적 접근 방법을 통해 객관적이고 정량적인 질의 측정 공식을 유도하는 방법론을 제시하였다. 이 논문에서 제시한 방법론의 핵심은 간단히 말해서 사람이 행하는 정성적인 판단을, 이에 가장 근접하는 정량적 측정 체계로 전환시키는 것이라고 보면 된다. 이것을 위해 정량화 문제를 문장의 단순 언어 특징들의 변화값을 이용한 최적화 문제로 환원시키고, 다시 이 최적화 문제를 유전자 알고리즘을 이용해 해결함으로써 문제를 효과적으로 해결할 수 있었다. 실험 결과를 보면, 본 논문에서 제시한 최적화 방법은 주어진 훈련용 예제와 검증용 예제 중 각각 99.84%, 99.88%를 만족시키는 해를 찾아내었으므로 정량적 질 평가 공식의 유도에 매우 효과적임을 알 수 있었다. 또한 도출된 측정 공식을 이용해서 실제 퇴고 시스템 평가에 적용한 결과 문장 질의 측정에 매우 유용하게 이용될 수 있음을 알 수 있었다. 이와 같이 질의 정량적 평가가 가능하다는 사실이 갖는 또 한가지 중요한 의미는 최종 사용자의 구매 의사나 개발자의 공학적 의사 결정을 위한 객관적 성능 평가 자료의 제공에 이 방법이 유용하게 사용될 수 있다는 점이다.Abstract This paper describes a method of building a quantitative measure of the quality of natural language sentences, particularly produced by document revision systems. Evaluating the quality of natural language sentences is intrinsically subjective, so what is most important as to the evaluation is whether the quality can be measured objectively. To solve such problem of objective measurability, genetic algorithm, an evolutionary learning method, is employed in this paper. The underlying standpoint of this approach is that building the quality measures is a task of constructing a formulae that produces as close results as can to the qualitative decisions made by humans. For doing this, the problem of measurability has been simply reduced to an optimization problem using the change of the values of simple linguistic parameters found in sentences, and the reduced problem has been solved effectively by the genetic algorithm. Experimental result shows that the optimization task satisfied 99.84% and 99.88% of the given objectives for training and validation samples, respectively, which means the method is quite effective in constructing the quantitative measure of the quality of natural language sentences. The actual evaluation result of a revision system shows that the measure is useful to quantize the quality of sentences. Another important contribution of this measure would be to provide an objective performance evaluation data of natural language systems on a basis of which end-users and developers can make their decision to fit their own needs.

Topology Optimization of Offshore Wind-Power Turbine Substructure Using 3D Solid-Element Model (3 차원 고체요소모델을 활용한 해상풍력터빈 하부구조의 위상최적화)

  • Kim, Won Cheol;Chung, Tae Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.3
    • /
    • pp.309-314
    • /
    • 2014
  • The structural layout of mechanical and civil structures is commonly obtained using conventional methods. For example, the shape of structures such as electric transmission towers and offshore substructures can be generated systematically. However, with rapid advancements in computer graphic technology, advanced structural analyses and optimum design technologies have been implemented. In this study, the structural shape of a jacket substructure for an offshore wind turbine is investigated using a topology optimization technique. The structure is subjected to multiple loads that are intended to simulate the loading conditions during actual operation. The optimization objective function is defined as one that ensures compliance of the structure under the given boundary conditions. Optimization is carried out with constraints on the natural frequency in addition to the volume constraint. The result of a first step model provides quick insights into the optimum layout for the second step structure. Subsequently, a 3D model in the form of the frustum of a quadrilateral pyramid is developed through topology optimization.

Fuzzy Controller Design of 2 D.O.F of Wheeled Mobile Robot using Niche Meta Genetic Algorithm (Niche Meta 유전 알고리즘을 이용한 2자유도 이동 로봇의 퍼지 제어기 설계)

  • Kim Sung-Hoe;Kim Ki-Yeoul
    • The Journal of Information Technology
    • /
    • v.5 no.4
    • /
    • pp.73-79
    • /
    • 2002
  • In this paper, I will propose the Niche-Meta Genetic Algorithm that has a multi-mutation operator for design of fuzzy controller. The gene in the proposed algorithm is formed by several parameters that represent the crossover rate, mutation rate and input-output membership functions. The optimization of fuzzy membership function is performed with local search on sub-population and the optimal structure is constructed with global search on total-population. The multi-mutation is selected under basis of the result of local evolution. A simulation for 2 D.O.F wheeled-mobile robot is showed to prove the efficiency of the proposed algorithm

  • PDF

A Comparison Study of Objective Functions for Automatic Calibration of a Watershed Runoff Continuous Simulation Model (유역 유출 연속모의 모형의 자동 보정을 위한 목적함수 구성에 관한 연구)

  • Ko, Dong-Geun;Lee, Sang-Ho;Kang, Tae-Uk
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.279-283
    • /
    • 2012
  • 유역 유출 연속모의 모형은 수자원 계획과 효율적인 물 관리 정책 수립에 중요한 도구가 된다. 유역 유출 연속모의 모형에는 다수의 매개변수가 있으며, 이러한 매개변수는 모형 보정을 통해 추정된다. 연구에서 사용한 모형은 SWMM이며 집합체 혼합 진화 알고리즘으로 자동 보정하였다. 자동 보정에 사용되는 최적화 알고리즘은 목적함수에 따라 상이한 결과를 도출하기도 한다. 이에 따라 본 연구에서는 유역 유출 모형의 자동보정에 적합한 목적함수를 선정하기 위하여 4개의 목적함수를 구성하였고, 밀양댐 유역에 적용하였다. 그리고 목적함수에 따른 자동 보정의 결과를 평가하기 위해 5가지의 평가지표를 활용하였다. 보정의 결과, 모든 목적함수에서 공통적으로 첨두유량의 오차는 다소 크게 발생하였다. 그리고 잔차 절대값의 합이 최소가 되도록 구성한 목적함수가 다른 목적함수에 비해 상대적으로 양호한 결과를 도출하였지만, 목적함수에 따른 큰 차이는 없었다. 또한, 유역 유출 연속모의에서는 유역의 물수지가 중요한 요소이므로 향후, 보다 정확도 높은 유역 유출 연속모의 모형의 자동 보정을 위해서는 첨두유량과 물수지와 관련된 오차를 제어할 수 있는 추가적인 기법이 요구된다.

  • PDF

Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization (다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.11a
    • /
    • pp.104-107
    • /
    • 2007
  • 다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모텔에 기반한 공진화 알고리즘(GCEA:Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.

  • PDF

Optimization of Neuro-Fuzzy System using Particle Swarm Optimization (PSO를 이용한 뉴로-퍼지 시스템 최적화)

  • Kim, Sung-Suk;Jeon, Byung-Suk;Song, Chang-Kyu;Kim, Ju-Sik;Kim, Yong-Tae
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2073-2074
    • /
    • 2006
  • 본 논문에서는 PSO를 이용한 뉴로-퍼지 모델의 구조 및 파라미터 동정을 실시한다. 진화연산 기법의 무작위 탐색 능력과 오차 미분기반 학습에서의 수렴 특성을 가진 PSO를 이용하여 학습이 진행되는 동안 모델의 구조 및 파라미터를 주어진 학습 데이터에 적합하도록 최적화 시킨다. 또한 모델의 크기를 결정하는 규칙의 수 결정을 클러스터링 기법을 이용하여 소속함수의 수가 증가하더라도 규칙이 지수함수적으로 증가하는 문제를 해결하였다. 제안된 기법의 유용성을 시뮬레이션을 통해 보이고자 한다.

  • PDF

A Survey on Combination of Genetic Algorithms and Neural Networks (유전자 알고리즘과 신경 회로망의 결합에 관한 연구 조사)

  • Song, Y.-S.;Kim, M.W.;Kim, J.M.
    • Electronics and Telecommunications Trends
    • /
    • v.9 no.4
    • /
    • pp.53-61
    • /
    • 1994
  • 최근 생물학에 기반을 두고 최적화 문제와 학습 문제에 많이 사용되고 있는 유전자 알고리즘과 신경 회로망 기술을 결합하는 연구가 활발해 지고 있다. 신경 회로망 연구에 비해 조금 늦게 시작된 유전자 알고리즘에 대한 연구는 유전자 복제, 교차, 돌연 변이 등의 현상을 걸쳐서 새로운 개체를 발생시켜 나가는 진화의 과정에서 착안하여 해결하고자 하는 문제의 해답을 유전자 탐색의 과정을 통하여 찾아내는 것이다. 이 글에서는 유전자 알고리즘과 신경 회로망을 혹은 서로 보조적인 입장에서 혹은 동등한 입장에서 결합하는 연구에 대한 조사를 소개함으로써 보다 복잡한 최적화 문제나 자동 프로그래밍, 기계 학습, 복잡한 자료 분석, 시계열 예측 등의 분야에 응용하는데 도움을 주고자 한다.

Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization (다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구)

  • Lee, Hea-Jae;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.7
    • /
    • pp.869-874
    • /
    • 2007
  • In searching for solutions to multiobjective optimization problem, we find that there is no single optimal solution but rather a set of solutions known as 'Pareto optimal set'. To find approximation of ideal pareto optimal set, search capability of diverse individuals at population space can determine the performance of evolutionary algorithms. This paper propose the method to maintain population diversify and to find non-dominated alternatives in Game model based Co-Evolutionary Algorithm.

Two-Stage Evolutionary Algorithm for Path-Controllable Virtual Creatures (경로 제어가 가능한 가상생명체를 위한 2단계 진화 알고리즘)

  • Shim Yoon-Sik;Kim Chang-Hun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.682-691
    • /
    • 2005
  • We present a two-step evolution system that produces controllable virtual creatures in physically simulated 3D environment. Previous evolutionary methods for virtual creatures did not allow any user intervention during evolution process, because they generated a creature's shape, locomotion, and high-level behaviors such as target-following and obstacle avoidance simultaneously by one-time evolution process. In this work, we divide a single system into manageable two sub-systems, and this more likely allowsuser interaction. In the first stage, a body structure and low-level motor controllers of a creature for straight movement are generated by an evolutionary algorithm. Next, a high-level control to follow a given path is achieved by a neural network. The connection weights of the neural network are optimized by a genetic algorithm. The evolved controller could follow any given path fairly well. Moreover, users can choose or abort creatures according to their taste before the entire evolution process is finished. This paper also presents a new sinusoidal controller and a simplified hydrodynamics model for a capped-cylinder, which is the basic body primitive of a creature.