• Title/Summary/Keyword: 진화적 최적화

Search Result 253, Processing Time 0.03 seconds

Evolutionary Learning Algorithm fo r Projection Neural NEtworks (투영신경회로망의 훈련을 위한 진화학습기법)

  • 황민웅;최진영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.7 no.4
    • /
    • pp.74-81
    • /
    • 1997
  • This paper proposes an evolutionary learning algorithm to discipline the projection neural nctworks (PNNs) with special type of hidden nodes which can activate radial basis functions as well as sigmoid functions. The proposed algorithm not only trains the parameters and the connection weights hut also c~ptimizes the network structure. Through the structure optimization, the number of hidden node:; necessary to represent a given target function is determined and the role of each hidden node is decided whether it activates a radial basis function or a sigmoid function. To apply the algorithm, PNN is realized by a self-organizing genotype representation with a linked list data structure. Simulations show that the algorithm can build the PNN with less hidden nodes than thc existing learning algorithm using error hack propagation(EE3P) and network growing strategy.

  • PDF

Generation of Efficient Fuzzy Classification Rules for Intrusion Detection (침입 탐지를 위한 효율적인 퍼지 분류 규칙 생성)

  • Kim, Sung-Eun;Khil, A-Ra;Kim, Myung-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.34 no.6
    • /
    • pp.519-529
    • /
    • 2007
  • In this paper, we investigate the use of fuzzy rules for efficient intrusion detection. We use evolutionary algorithm to optimize the set of fuzzy rules for intrusion detection by constructing fuzzy decision trees. For efficient execution of evolutionary algorithm we use supervised clustering to generate an initial set of membership functions for fuzzy rules. In our method both performance and complexity of fuzzy rules (or fuzzy decision trees) are taken into account in fitness evaluation. We also use evaluation with data partition, membership degree caching and zero-pruning to reduce time for construction and evaluation of fuzzy decision trees. For performance evaluation, we experimented with our method over the intrusion detection data of KDD'99 Cup, and confirmed that our method outperformed the existing methods. Compared with the KDD'99 Cup winner, the accuracy was increased by 1.54% while the cost was reduced by 20.8%.

Formal Model of Extended Reinforcement Learning (E-RL) System (확장된 강화학습 시스템의 정형모델)

  • Jeon, Do Yeong;Song, Myeong Ho;Kim, Soo Dong
    • Journal of Internet Computing and Services
    • /
    • v.22 no.4
    • /
    • pp.13-28
    • /
    • 2021
  • Reinforcement Learning (RL) is a machine learning algorithm that repeat the closed-loop process that agents perform actions specified by the policy, the action is evaluated with a reward function, and the policy gets updated accordingly. The key benefit of RL is the ability to optimze the policy with action evaluation. Hence, it can effectively be applied to developing advanced intelligent systems and autonomous systems. Conventional RL incoporates a single policy, a reward function, and relatively simple policy update, and hence its utilization was limited. In this paper, we propose an extended RL model that considers multiple instances of RL elements. We define a formal model of the key elements and their computing model of the extended RL. Then, we propose design methods for applying to system development. As a case stud of applying the proposed formal model and the design methods, we present the design and implementation of an advanced car navigator system that guides multiple cars to reaching their destinations efficiently.

Enhancing Microbial Resilience: The Role of Adaptive Laboratory Evolution in Industrial Biotechnology (미생물 내성 강화: 산업 생명공학에서의 적응 실험실 진화의 역할)

  • Theavita Chatarina Mariyes;Eun-Jae Ju;Jin-Ho Lee
    • Journal of Life Science
    • /
    • v.34 no.10
    • /
    • pp.730-743
    • /
    • 2024
  • Industrial biotechnology leverages microorganisms such as Saccharomyces cerevisiae and Escherichia coli for sustainable production of chemicals, fuels, and pharmaceuticals. However, despite their potential, microbial production faces challenges due to environmental stressors, which impede efficiency and economic feasibility. While traditional genetic engineering offers solutions, it often fails to create robust strains for industrial conditions. Adaptive laboratory evolution (ALE) has emerged as a potent strategy to enhance microbial resilience by mimicking natural selection under controlled conditions. ALE has successfully improved tolerance to stressors such as toxic compounds, extreme pH, and high temperatures in various microorganisms. In yeasts, ALE has enhanced acetic acid and furfural tolerance, which is crucial for bioethanol production. Similarly, in E. coli, ALE has increased resistance to acid stress and improved production of succinic acid and L-serine. In lactic acid bacteria, ALE has boosted lactic acid production and strain stability under thermal and freeze-thaw stresses, benefiting both industrial and probiotic applications. Corynebacterium glutamicum has also shown significant improvements in growth rates, stress tolerance, and production capabilities through ALE. These advancements underline ALE's role in optimizing microbial strains for diverse industrial processes, making it a powerful tool in microbial biotechnology. This review highlights the latest applications and methods of ALE, emphasizing its impact on industrial microorganisms and potential for future research in sustainable bioproduction.

A Knowledge-based Encoding for Performance Improvement of Interactive Genetic Algorithm (대화형 유전자 알고리즘의 성능향상을 위한 지식기반 인코딩)

  • 김희수;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2000.04b
    • /
    • pp.211-213
    • /
    • 2000
  • 진화 연산은 최적화 및 분류 작업을 필요로 하는 대부분의 응용 분야에서 매우 효율적인 해결 방법을 제시해 주지만, 예술이나 감성 등의 특정 분야에의 적용에 있어서는 그 한계를 드러낸다. 이를 극복하기 위해서 여러 가지 기술들이 제안되었으며, 이 중에서 특히 대화형 유전자 알고리즘이 오늘날 널리 연구되고 있다. 대화형 유전자 알고리즘은 상호 작용을 통하여 사용자의 평가치를 개체의 적합도로 받아들이고, 이를 기반으로 집단을 진화시키는 방법이다. 본 논문에서는 이를 의상디자인 지원 시스템에 적용시킴으로써 일반적으로 나타내기 어려운 사용자의 선호도나 감성을 디자인 과정에 반영할 수 있었다. 또한, 이론에 기반한 분석 및 실험적인 결과를 통해, 제안된 인코딩 방법이 유용함을 알 수 있었다.

  • PDF

Design of Steel Structures Using the Neural Networks with Improved Learning (개선된 인공신경망의 학습방법에 의한 강구조물의 설계)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.6 s.79
    • /
    • pp.661-672
    • /
    • 2005
  • For the efficient stochastic optimization of steel structures for which a large number of analyses is required, artificial neural networks,which have emerged as a powerful tool that could have been used to replace time-consuming procedures in many scientific or engineering applications, are applied. They are utilized for the solution of the equilibrium equations resulting from the application of the finite element method in connection with the reanalysis type of problem, for which a large number of finite element analyses are required in this study. As such, the use of artificial neural networks to predict finite element analysis outputs simplifies and facilitates the performance of the stochastic optimal design of structural systems where a trained neural network is used to replace the structural reanalysis phase. Moreover, to improve efficiency of used artificial neural networks, genetic algorithm is utilized. The stochastic optimizer used in this study is an algorithm based on the evolution theory. The efficiency of the proposed procedure is examined in problems with both volume (weight) functions and real-world cost functions

Exploring the Feature Selection Method for Effective Opinion Mining: Emphasis on Particle Swarm Optimization Algorithms

  • Eo, Kyun Sun;Lee, Kun Chang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.11
    • /
    • pp.41-50
    • /
    • 2020
  • Sentimental analysis begins with the search for words that determine the sentimentality inherent in data. Managers can understand market sentimentality by analyzing a number of relevant sentiment words which consumers usually tend to use. In this study, we propose exploring performance of feature selection methods embedded with Particle Swarm Optimization Multi Objectives Evolutionary Algorithms. The performance of the feature selection methods was benchmarked with machine learning classifiers such as Decision Tree, Naive Bayesian Network, Support Vector Machine, Random Forest, Bagging, Random Subspace, and Rotation Forest. Our empirical results of opinion mining revealed that the number of features was significantly reduced and the performance was not hurt. In specific, the Support Vector Machine showed the highest accuracy. Random subspace produced the best AUC results.

Tree Representation for solving Degree Constraint Minimum Spanning Tree Problem (차수 제약 걸침 나무 문제를 해결하기 위한 트리 표현법)

  • 석상문;안병하
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10a
    • /
    • pp.178-180
    • /
    • 2003
  • 최소 걸침 나무는 널리 알려진 순회 판매원 문제와 같이 전통적인 최적화 문제 중에 하나이다. 특히나 최소 걸침 나무와는 달리 차수 제약 최소 걸침 나무의 경우는 일반적으로 NP-hard 문제로 알려져 있다. 이러한 NP-hard 문제를 해결하기 위한 다양한 접근법들이 소개되었는데 유전 알고리즘은 효율적인 방법 중에 하나로 알려져 있다. 유전 알고리즘과 같이 진화에 기반을 둔 알고리즘을 어떤 문제에 적응하기 위해서 가장 우선적으로 고려되어야 하는 것은 해를 어떻게 표현할 것인가 인데 본 논문에서는 차수 제약 최소 걸침 나무를 해결하기 위한 새로운 트리 표현법을 제안한다.

  • PDF

Meta-heuristic Method for the Single Source Capacitated Facility Location Problem (물류 센터 위치 선정 및 대리점 할당 모형에 대한 휴리스틱 해법)

  • Soak, Sang-Moon;Lee, Sang-Wook
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.107-116
    • /
    • 2010
  • The facility location problem is one of the traditional optimization problems. In this paper, we deal with the single source capacitated facility location problem (SSCFLP) and it is known as an NP-hard problem. Thus, it seems to be natural to use a heuristic approach such as evolutionary algorithms for solving the SSCFLP. This paper introduces a new efficient evolutionary algorithm for the SSCFLP. The proposed algorithm is devised by incorporating a general adaptive link adjustment evolutionary algorithm and three heuristic local search methods. Finally we compare the proposed algorithm with the previous algorithms and show the proposed algorithm finds optimum solutions at almost all middle size test instances and very stable solutions at larger size test instances.

Design of Pattern Classification Rule based on Local Linear Discriminant Analysis Classifier by using Differential Evolutionary Algorithm (차분진화 알고리즘을 이용한 지역 Linear Discriminant Analysis Classifier 기반 패턴 분류 규칙 설계)

  • Roh, Seok-Beom;Hwang, Eun-Jin;Ahn, Tae-Chon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.1
    • /
    • pp.81-86
    • /
    • 2012
  • In this paper, we proposed a new design methodology of a pattern classification rule based on the local linear discriminant analysis expanded from the generic linear discriminant analysis which is used in the local area divided from the whole input space. There are two ways such as k-Means clustering method and the differential evolutionary algorithm to partition the whole input space into the several local areas. K-Means clustering method is the one of the unsupervised clustering methods and the differential evolutionary algorithm is the one of the optimization algorithms. In addition, the experimental application covers a comparative analysis including several previously commonly encountered methods.