Proceedings of the Korean Information Science Society Conference
/
2001.10b
/
pp.25-27
/
2001
진화 알고리즘에서 고려할 사항 중 하나는 문제와 관련 있는 진화연산 즉, 교배 연산과 돌연변이 연산을 정의하는 것이다. 일반적으로 교배 연산은 두 개체의 정보를 교환하는 재조합 연산으로써 진화의 속도를 촉진시키는 역할을 하고 돌연변이 인산은 개체집단의 다양성 을 유지시키는 역할을 한다. 그러나 이러한 진화연산자는 확률에 근거하여 모든 개체에 적용되는 맹목적인 연산이 가질 수 있는 진화시간 지연의 문제점을 갖는다. 본 논문에서는 맹목적 진화연산에 의한 진화 시간 지연을 해결하기 위해 휴리스틱 연산을 제안한다. 휴리스픽 연산은 문제의 특성에 맞지 않는 개체에만 적용되는 연산으로 진화 시간을 단축시킬 수 있다. 따라서 이러한 휴리스틱 연산의 타당성을 확인하기 위해 본 논문에서는 진화 알고리즘을 이용하여 최적의 클러스터 위치와 개수를 자동으로 찾아주는 문제에 클러스터의 특성을 고려한 휴리스틱 연산인 합병연산과 분할연산 그리고 K-means연산을 정의하여 다차원 실험데이터로 실험한 결과를 보이고 있다.
In this paper, an improved ACDE (Adaptive Cauchy Differential Evolution) algorithm with faster convergence speed, called ACDE2, is suggested. The baseline ACDE algorithm uses a "DE/rand/1" mutation strategy to provide good population diversity, and it is appropriate for solving multimodal optimization problems. However, the convergence speed of the mutation strategy is slow, and it is therefore not suitable for solving unimodal optimization problems. The ACDE2 algorithm uses a "DE/current-to-best/1" mutation strategy in order to provide a fast convergence speed, where a control parameter initialization operator is used to avoid converging to local optimization. The operator is executed after every predefined number of generations or when every individual fails to evolve, which assigns a value with a high level of exploration property to the control parameter of each individual, providing additional population diversity. Our experimental results show that the ACDE2 algorithm performs better than some state-of-the-art DE algorithms, particularly in unimodal optimization problems.
The mutation operation is the main operation in the evolutionary programming which has been widely used for the optimization of real valued function. In general, the mutation operation utilizes both a probability distribution and its parameter to change values of variables, and the parameter itself is subject to its own mutation operation which requires other parameters. However, since the optimal values of the parameters entirely depend on a given problem, it is rather hard to find an optimal combination of values of parameters when there are many parameters in a problem. To solve this shortcoming at least partly, if not entirely, in this paper, we propose a new mutation operation in which the parameter for the variable mutation is theoretically estimated from the self-adaptive perspective. Since the proposed algorithm estimates the scale parameter of the Cauchy probability distribution for the mutation operation, it has an advantage in that it does not require another mutation operation for the scale parameter. The proposed algorithm was tested against the benchmarking problems. It turned out that, although the relative superiority of the proposed algorithm from the optimal value perspective depended on benchmarking problems, the proposed algorithm outperformed for all benchmarking problems from the perspective of the computational time.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2007.11a
/
pp.99-103
/
2007
본 논문은 최적 탐색 알고리즘중의 하나인 실수 표현 진화 알고리즘에 자가 적용 세대차 조절을 이용하여 보다 빠른 연산으로 우수해에 접근하기 위한 새로운 방식을 소개한다. 알고리즘의 성능에 영향을 끼치는 진화 속도를 기존 진화 방식과 유전연산자의 수정을 통해 조절하여 탐색 성능을 개선 한다. 조기 수렴의 방지 및 탐색성능의 향상을 위하여 선택과 대치를 포함한 진화방식을 개선하고, 유전 연산자에 의하여 생성된 자손의 대치확률에 따라서 자손의 생성범위를 자가 적응적으로 조절하여, 보다 적은 계산량으로 전역 최적화를 찾고자 한다. 제안된 방법을 벤치마크 테스트 문제에 적용하여 G3 알고리즘, CMA-ES 그리고 DE 등과 성능을 비교하였다.
본 논문에서는 사용자 개개인에 최적화된 아바타를 생성하기 위해 대화형 진화연산(Interactive Genetic Algorithm, IGA)을 적용하는 방법을 제안하고 있다. 대화형 진화연산은 사용자의 선택을 적합도 평가에 사용하는 방법이기 때문에, 사용자의 개인적인 취향을 아바타 생성 과정에 반영할 수 있다. 본 연구에서는 기존의 대화형 진화연산이 가지고 있는 단점을 극복하기 위해 hidden population 기법과, simplified genotype 기법을 제안한다. 이러한 방법들은 단시간 내에 최적화된 결과물을 생성하도록 유도함으로써 IGA 시스템의 최대 문제점인 사용자의 피로도를 최소화한다 마지막으로, 제안하고 있는 알고리즘의 우수성을 증명하기 위해 사용자의 만족도나 신뢰도를 측정할 수 있는 독자적인 평가 방법을 소개하고 있다
Proceedings of the Korean Information Science Society Conference
/
2002.04b
/
pp.322-324
/
2002
진화 연산의 확률적 모델인 베이지안 진화 알고리즘의 수렴 특성에 대한 이전 연구를 통해 개체군 크기가 1인 경우에 대해 베이지안 진화 알고리즘을 단일 테인 MCMC로 변환하여 수렴 특성을 보였다. 본 논문에서는 개체군 크기가 1로 제한되지 않는 경우 베이지안 진화알고리즘을 다중 체 인의 개체군으로 생각하여 수렴 특성을 살펴본다.
Proceedings of the Korean Information Science Society Conference
/
2012.06b
/
pp.372-374
/
2012
아날로그 회로는 가장 기본적인 전기/전자 회로로써 현재도 높은 중요도를 가지고 있지만, 설계를 위해서는 전문적인 지식이나 기술이 반드시 필요하다. 그래서, 아날로그 회로를 설계하기 위해 진화 연산을 이용한 기법이 연구되어 왔다. 진화연산은 최적화 문제를 해결하는 한 방법으로써 다양한 문제에 적용 가능하다. 하지만, 많은 경우 매우 오랜 시간이 걸려 재현이 어렵고 계산비용이 많이 요구되어왔다. 하지만, 최근 들어 진화전략을 이용하여 작은 집단 크기로 아날로그 회로를 진화시킬 수 있는 방법이 제안되었다. 본 연구에서는 진화전략을 이용한 방법에 기반하여, 내고장성을 가진 회로를 설계하는 기법을 제안하고, 실험을 통하여 기본 진화전략 알고리즘과 비교한다. 그 결과, 제안한 방법을 통해 생성한 회로는 기본 알고리즘을 사용했을 때 보다 고장으로 인해 소자의 값이 변경되었을 때 성능하락이 더 적었다.
Incorrect deployment of RFID readers occurs reader-to-reader interferences in many applications using RFID technologies. Reader-to-reader interference occurs when a reader transmits a signal that interferes with the operation of another reader, thus preventing the second reader from communicating with tags in its interrogation zone. Interference detected by one reader and caused by another reader is referred to as a reader collision. In RFID systems, the reader collision problem is considered to be the bottleneck for the system throughput and reading efficiency. In this paper, we propose a novel RFID reader anti-collision algorithm based on evolutionary algorithm(EA). First, we analyze characteristics of RFID antennas and build database. Also, we propose EA encoding algorithm, fitness algorithm and genetic operators to deploy antennas efficiently. To show superiority of our proposed algorithm, we simulated our proposed algorithm. In the result, our proposed algorithm obtains 95.45% coverage rate and 10.29% interference rate after about 100 generations.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.78-80
/
2000
클러스터링이란 주어진 데이터들을 유사한 성질을 가지는 군집으로 나누는 것으로 많은 분야에서 응용되고 있으며, 특히 최근 관심의 대상인 데이터 마이닝의 중요한 기술로서 활발히 응용되고 있다. 클러스터링에 있어서 기존의 알고리즘들은 지역적 최적해에 수렴하는 것과 사전에 클러스터 개수를 미리 결정해야 하는 문제점을 가지고 있다. 본 논문에서는 병렬 탐색을 통해 최적해를 찾는 진화알고리즘을 사용하여 지역적 최적해에 수렴되는 문제점을 개선하였으며, 자동으로 적절한 클러스터 개수를 결정할 수 있게 하였다. 또한 진화알고리즘의 단점인 탐색공간의 확대에 따른 탐색시간의 증가는 휴리스틱 연산을 정의하여 개선하였다. 제안한 알고리즘의 성능 및 타당성을 보이기 위해 가우시안 분포 데이터를 사용하여 제안한 알고리즘의 성능이 우수함을 보였다.
Proceedings of the Korean Information Science Society Conference
/
2000.10b
/
pp.15-17
/
2000
진화 연산의 확률적 모델인 베이지안 진화 알고리즘이 개체군의 크기를 1로 제한하고 고정된 차원의 탐색 공간을 갖는 경우, 목표 확률분포에 수렴함이 이전 연구[2]를 통해 증명되었다. 본 논문에서는 개체군의 크기가 2 이상인 경우의 베이지안 진화 알고리즘을 개체군 자체를 하나의 상태로 보는 단일 체인의 베이지안 입자 필터(particle filter)로 변환하여, 입자 필터의 수렴 특성을 이용하여 목표 확률분포에 수렴함을 증명한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.