• Title/Summary/Keyword: 진동 frequency

Search Result 5,537, Processing Time 0.025 seconds

Studying Acoustical Properties of Micro-Speaker as a Function of Diaphragm Material (진동판의 재질에 따른 마이크로스피커의 음향특성연구)

  • Oh Sei-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.222-228
    • /
    • 2006
  • The acoustical property of micro-speaker had been investigated as a function of the diaphragm material in this study. Young's modulus and the density of material is deeply related to the determination of sound velocity and stiffness. As a result, it was appeared that the resonance frequency of micro-speaker was PEI < PPS < PET < PEN. This experimental result was in an excellent agreement with the theoretical one. The increasing ratio of sound pressure level to the frequency between 20Hz and the resonance frequency ($f_s$) and the high resonance frequency ($f_h$) were not affected by the diaphragm material.

Formula for Equivalent Impulsive Force to Predict Vibrational Response of High-frequency Staircases (고진동수 계단의 진동응답 산정을 위한 등가임펄스 산정식 제안)

  • Kim, Na Eun;Lee, Cheol Ho;Kim, Sung Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.181-193
    • /
    • 2015
  • High-frequency staircases are widely used nowadays to meet aesthetics and functionality needed in modern architecture. Unfortunately, no design guide is available in domestic practice to predict response or evaluate the vibration performance of high-frequency staircases. SCI-P354 published by the Steel Construction Institute of UK provides the formula for effective impulsive force. However, this formula was shown to overestimate the response of high-frequency staircases excited by fast ascending and descending over 2.2Hz pace frequency because it was developed based on the walking test in a slow pace frequency. This study proposes a semi-analytical formula to predict the response of stiff staircases based on analytical and experimental studies of response acceleration for various walking frequencies covering 1.4~4.5Hz.

Analysis of Vibration of a Simple Plate In a Medium-to-High Frequency Range With Power Flow Finite Element Method (파워흐름유한요소법에 의한 중고주파수 영역에서 단순 평판의 진동 해석)

  • Seo, Seong-Hoon;Hong, Suk-Yoon;Kil, Hyun-Gwon;Huh, Young
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.125-131
    • /
    • 2003
  • In this paper Power Flow Finite Element Method(PFFEM) has been implemented to analyze the vibration of a plate in mid and high frequency ranges. In order to solve the vibration energy governing equation in Power Flow Analysis(PFA), The Finite Element Method(FEM) was used as a numerical tool. It allowed one to predict the distribution of displacement and Intensity in the plate vibrating at mid and high frequencies. The results were compared with the analytical solutions and the approximate FEM solutions. The comparison showed that PFFEM can be an effective tool to analyze the structural vibration in mid and high frequency ranges.

Power Spectrum Estimation on the Signals with Low Frequency (저주파진동 해석을 위한 데이터처리기법 연구)

  • 천영수;조남규;이리형
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.185-193
    • /
    • 1997
  • A major problem of frequency analysis in the field of low-frequencies such as building or construction vibration is the way of signal processing which is appropriate to obtain included frequency content from the finite process to be measured. Therefore, it is the aim of the investigation reported herein to develop the signal processing algorithm which is analyzed without losing the reliability of the measurements in low-frequency domain. To accomplish the research objective, it was analyzed the problems on the way of signal processing in low-frequency domain, and compared the response characteristics of FFT with those of MEM (Maximum Entropy Method) about the low-frequency of vibration. This evaluation of the response characteristics is used in determining appropriate signal processing algorithm into the low-frequency domain.

  • PDF

New Research Tool for Understanding of Surfaces - Sum Frequency Generation Vibrational Spectroscopy (표면의 이해를 위한 새로운 연구 방법 - 합 진동수 발생 진동 분광법)

  • Kim, Hak-Jin
    • Journal of the Korean Chemical Society
    • /
    • v.50 no.6
    • /
    • pp.429-439
    • /
    • 2006
  • vibrational spectrum of molecules on surfaces can be measured with high selectivity and sensitivity using sum frequency generation vibrational spectroscopy (SFG-VS). Selectivity and sensitivity of this non-linear spectroscopy have made it an effective experimental tool in surface research. Surface systems studied with SFG_VS are surveyed, and experimental and theoretical background of SFG-VS is briefly reviewed.

Structural Dynamic Modification of Fixture by Antiresonance Frequency Analysis in Environmental Vibration Test Control (환경진동시험 제어에서 반공진 진동수해석에 의한 치구의 구조변경설계)

  • 김준엽;정의봉
    • Journal of KSNVE
    • /
    • v.5 no.4
    • /
    • pp.555-563
    • /
    • 1995
  • This paper proposes the method of antiresonance frequency analysis of multi-input multi-output system. The structural dynamic modification techniques by antiresonance frequency analysis are also applied to reduce the undertest at specimen attachment points on the fixture in environmental vibration test, which is resulted from the inconsistency of antiresonance frequencies at any specified points. Several computer simulations show that the proposed method can remove the undertest problem which is not removed in conventional vibration test control. And the effectiveness of the method is verified with the impact hammer excitation of aluminium fixture model.

  • PDF

An Experimental Study on Vibration Control of Concrete Slab (콘크리트슬래브의 진동제어에 관한 실험적 연구)

  • Byun, Keun Joo;Lho, Byeong Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.3
    • /
    • pp.473-485
    • /
    • 1994
  • Vibration control of concrete slab mounting precision instrument is needed to make the working vibration environments in frequency domain as well as time domain. In order to take the vibration control countermeasures, signal and system analyses of the concrete slab are processed. Through them the dynamic responses of concrete slab are obtained in frequency domain, and frequency response functions are acquired by exciting the concrete slab and measuring dynamic responses at various points across its surface. The dynamic characteristics of concrete slab are determined by experimental modal analysis. Based on modal parameters from a set of frequency response function measured, it is possible to investigate the effects of potential design modifications and reduce the dynamic response of concerned point by moving or suppressing an objectionable modal resonance conditions through structural dynamics modification.

  • PDF

A Study on the relationship between natural frequency and span of Spatial Structure (대공간 구조물의 고유진동수와 스팬의 상관관계)

  • Yoon, Sung-Won;Park, Yong
    • Proceeding of KASS Symposium
    • /
    • 2008.05a
    • /
    • pp.155-158
    • /
    • 2008
  • As the span of spatial structure is getting longer, the law frequency of the structure makes the wind-induced response much increased. However, there are lots of hardships to establish the economical structural systems due to the fact that an relative equation between the frequency and the span of the domestic spatial structures is not existed in the stage of the basic planning design. Therefore, among the large-span structures, this paper focused on the relationship between the frequency and the span of the world-cup stadium built in 2000s. The relative equation between the frequency and span is compared with the data measured in Japan. Moreover, we are willing to provide the basic study by suggesting the summary equation in this paper.

  • PDF

Damage detection of a structure based on natural frequency ratio measurements (고유진동수비 측정에 기초한 구조물 손상탐지)

  • Hwang, Ho-Yon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.8
    • /
    • pp.726-734
    • /
    • 2007
  • 구조물에 손상이 발생하면 구조물의 강성변화로 구조물의 고유진동수에 변화가 발생하게 된다. 실험을 통해 얻을 수 있는 손상 전 구조물의 고유진동수와 해석적 방법을 사용하여 구하는 고유진동수가 같다고 가정하고 해석적인 방법으로 손상전후 고유진동수비를 구하여 3차원 그래프로 표시하였다. 손상이 한 부위에 존재할 경우 진동실험으로 구한 고유진동수비를 고유진동수비 그래프와 비교하여 손상의 위치, 크기 및 방향을 알 수 있었으나 여러 지점에 손상이 발생할 경우에는 손상을 파악하기 위해 고유진동수비 그래프 외에 주파수 응답함수를 병행하여 사용하였다.

봉의 비틀림 고유진동에 대한 인접 점성유체의 영향

  • 김진오;전한용
    • Journal of KSNVE
    • /
    • v.10 no.1
    • /
    • pp.168-173
    • /
    • 2000
  • This paper deals with the theoretical study on the effect of the viscosity of an adjacent viscous fluid on the characteristics of the torsional vibration of a rod with fixed-free boundary conditions. Expressions for the natural frequency and damping factor have been obtained as functions of the viscosity of the fluid by exact and asymptotic analyses. The results provide quantitative information of the natural frequency reduction and damping rate affected by the fluid viscosity.

  • PDF