DOI QR코드

DOI QR Code

Formula for Equivalent Impulsive Force to Predict Vibrational Response of High-frequency Staircases

고진동수 계단의 진동응답 산정을 위한 등가임펄스 산정식 제안

  • Kim, Na Eun (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Lee, Cheol Ho (Dept. of Architecture and Architectural Engineering, Seoul National University) ;
  • Kim, Sung Yong (Dept. of Architecture and Architectural Engineering, Seoul National University)
  • Received : 2014.09.22
  • Accepted : 2014.12.29
  • Published : 2015.04.27

Abstract

High-frequency staircases are widely used nowadays to meet aesthetics and functionality needed in modern architecture. Unfortunately, no design guide is available in domestic practice to predict response or evaluate the vibration performance of high-frequency staircases. SCI-P354 published by the Steel Construction Institute of UK provides the formula for effective impulsive force. However, this formula was shown to overestimate the response of high-frequency staircases excited by fast ascending and descending over 2.2Hz pace frequency because it was developed based on the walking test in a slow pace frequency. This study proposes a semi-analytical formula to predict the response of stiff staircases based on analytical and experimental studies of response acceleration for various walking frequencies covering 1.4~4.5Hz.

심미성과 기능성이 현대 건축의 중요한 요소로 대두되면서 최근 비교적 경량의 고진동수 계단의 활용처가 점차 증가하고 있다. 하지만 국내의 실정 상 고진동수 계단의 진동성능을 평가하기 위한 방법이 전무한 실정이다. 유럽강구조학회의 지침의 경우 등가임펄스하중 개념을 도입하여 고진동수 바닥의 응답예측 및 진동성능 평가에 활용하고 있으나, 이는 서행보행에 대한 실험치를 토대로 제안한 값으로 2.2Hz 이상의 속보 가진에 대한 응답을 과대평가하는 한계를 지니고 있다. 이에 본 연구에는 1.4~4.5Hz의 다양한 가진진동수에 대한 가속도 응답의 실측값을 바탕으로 서행 및 속보 가진 시의 응답을 합리적으로 예측할 수 있는 등가임펄스 식을 제안하였다.

Keywords

References

  1. ISO (1997) Mechanical Vibration and Shock: Evaluation of Human Exposure to Whole-body Vibration. Part 1, General Requirements: International Standard ISO 2631-1: 1997(E), ISO.
  2. Thomas, M.M., David, E.A., and Eric. E.U. (2003) Steel Design Guide Series 11 : Floor Vibrations Due to Human Activity. American Institute of Steel Construction.
  3. Smith, A.L., Hicks, S.J., and Devine, P.J. (2009) Design of Floors for Vibration : A New Approach. The Steel Construction Institute.
  4. Hauksson, F. (2005) Dynamic Behaviour of Footbridges Subjected to Pedestrian-Induced Vibrations, Lund University, Sweden.
  5. Middleton, C.J. and Brownjohn, J.M.W. (2010) Response of High Frequency Floors: A Literature Review, Engineering Structures, Vol.32, No.2, pp.337-352. https://doi.org/10.1016/j.engstruct.2009.11.003
  6. Kerr, S.C. and Bishop, N.W.M. (2001) Human Induced Loading on Flexible Staircases, Engineering Structures, ELSEVIER. Vol.23, No.1, pp.37-45. https://doi.org/10.1016/S0141-0296(00)00020-1
  7. Willford, M., Young, P., and Field, C. (2006) Improved Methodologies for the Prediction of Footfall-Induced Vibration. Building Integration Solution, pp.1-15.
  8. Brownjohn, J.M.W. (2006) Dynamic Performance of High Frequency Floors. Proceedings, IMACXXIV.
  9. Chopra. A.K. (1995) Dynamics of Structures : Theory and Applications to Earthquake Engineering, Vol.3, Prentice Hall, New Jersey.

Cited by

  1. 자유공중폭발에 의한 폭발압력과 충격량에 대한 수치해석 vol.28, pp.4, 2015, https://doi.org/10.7781/kjoss.2016.28.4.271