• Title/Summary/Keyword: 진동 운동

Search Result 892, Processing Time 0.024 seconds

Harmonic Excitation of Shear Building with Force-Controlled Shaking Table (힘-제어 진동대를 이용한 전단건물의 조화진동)

  • Lee, Sang Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.853-859
    • /
    • 2015
  • 1-DOF shear building was designed, built and tested to investigate the interactions between the shear building and the shaking table excited harmonically by the electro-magnetic forces. In the experiments horizontal accelerations of the shaking table and the shear building were measured. To understand the experimental results experimental setting was modeled as an unconstrained 2-DOF system under the hormonic forces. The responses of the shear building and the shaking table of the unconstrained 2-DOF system were found with the equations of motions. The magnification factors of the table and the shear building with respect to the amplitude of the harmonic forces and the transmission of the shear building with respect to the table excitations were found and compared with the experimental results.

Durability Performance Evaluation of Automotive Components Using Hydraulic 6 Axis Simulation Table (유압식 6자유도 가진 테이블을 이용한 자동차부품 내구성능 평가 기술)

  • Choi, G.J.
    • Journal of Drive and Control
    • /
    • v.5 no.1
    • /
    • pp.11-16
    • /
    • 2008
  • 자동차 부품은 주행 중 전후, 좌우, 상하방향의 병진 운동과 각 축에 대한 회전 운동 등 6자유도의 운동을 받는다. 이와 같은 운동에 따라 자동차에 탑재되는 운전석(cockpit), 의자(seat), 연료탱크, 라디에이터, FEM(front end module) 등의 부품 및 모듈 등은 6자유도 운동을 받으면서 각 부품의 기능을 수행하고 있다. 따라서 이들 부품을 짧은 시간 내에 개발하기 위해서는 가속내구시험평가가 필수적인데 이를 위해 유압식 6자유도 가진 테이블을 이용한 기술이 활용되고 있다. 본 해설에서는 자동차 부품 및 모듈의 내구성능 평가 과정과 함께 유압식 6자유도 가진 테이블을 보유하고 관련 부품의 진동내구성능을 평가하고 있는 군산대학교 자동차부품기술혁신센터(KATIC)의 시험 평가장비 및 사례를 기술하였다. 이와 같은 자동차 부품 내구성능평가 방법과 6자유도 가진 테이블을 이용한 시험은 향후 자동차부품 및 일반기계부품 개발업체에서 내구성능향상을 위하여 활용도가 더욱 증대될 것이다.

  • PDF

Dynamics of a Micro Three-axis Ring Gyroscope Considering Electrode Effects (전극 효과를 고려한 마이크로 3축 링 자이로스코프의 동역학)

  • 김창부;강태민
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.1
    • /
    • pp.64-72
    • /
    • 2004
  • In this paper. we analyse and present electro-mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The motions of the ring are electro-statically derived. sensed and balanced by electrodes. The equations of motion are formulated. The measuring method of angular velocities by force-to-rebalance is presented. The dynamic characteristics of a ring gyroscope are calculated and compared.

Nonlinear Modeling Employing Hybrid Deformation Variables and Frequency Response Characteristics of a Cantilever Beam Undergoing Axially Oscillating Motion (축 방향 왕복운동을 하는 외팔보의 복합변형변수를 이용한 비선형 모델링 및 주파수 응답특성)

  • 김나은;현상학;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.3
    • /
    • pp.210-216
    • /
    • 2003
  • A nonlinear dynamic modeling method for cantilever beams undergoing axially oscillating motion is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. It is shown that the geometric nonlinear effects of stretching and curvature play important roles to accurately predict the frequency response characteristics. The effects of the amplitude and the damping constant on the frequency characteristics are also exhibited.

An Experiment Study on the Chaos Phenomenon for a Rectangular Cantilever Beam (직사각형 외팔보의 혼돈현상에 대한 실험)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Piao, Chang-Hao
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.567-571
    • /
    • 2005
  • The slender rectangular cantilever beam has vef interesting to study dynamic behaviors of the harmonic base excitation of a cantilever beam shows many nonlinear dynamics due to unstability , energy transfer and mode coupling. Nonlinear phenomenon shows superharmonic, subharmonic, super subharmonic and chaotic motions of the cantilever beam. Experimental observation and verification of these phenomenon carry much importance for the theoretical study as well as in it self. In the experimental cantilever beam, the chaotic motions of the beam appear as a pink noise signal in FFT analysis and as a torus structure in the oscilloscope analyzed to eventually give information of chaotic motions of the cantilever beam.

  • PDF

One to one Resonance on the Rectangular Cantilever Beam (사각형 외팔보에서의 일대일 공진)

  • Kim, Myoung-Gu;Pak, Chul-Hui;Cho, Chong-Du;Lee, Heung-Shik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.424-429
    • /
    • 2005
  • In this paper, the response characteristics of one to one resonance on the rectangular cantilever beam in which basic harmonic excitations are applied by nonlinear coupled differential integral equations are studied. This equations have 3-dimensional non-linearity of nonlinear inertia and nonlinear curvature. Galerkin and multi scale methods are used for theoretical approach to one to one internal resonance. Nonlinear response characteristics of 1st, 2nd, 3rd modes are measured from the experiment for basic harmonic excitation. From the experimental result, geometrical terms of nonlinearity display light spring effect and these terms play an important role in the response characteristics of low frequency modes. Dynamic behaviors in the out of plane are also studied.

  • PDF

Dynamic Analysis of a Cantilever Beam Undertaking Impulsive Force That Undergoes Rigid Body Motion (강체 운동을 고려한 충격을 받는 외팔 보의 동적 해석)

  • Lim, Hong-Seok;Yoo, Hong-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.890-895
    • /
    • 2005
  • This paper presents the dynamic analysis of a cantilever beam undertaking impulsive force that undergoes rigid body motion. The transient response of the beam induced by the impulsive force and the rigid body motion is calculated based on hybrid deformation variable modeling method by applying the Rayleigh-Ritz assumed mode method. The stiffness variation effect caused by the rigid body motion is considered in this modeling. The effects of the impulsive force position and the angular velocity on the transient responses of the beam are investigated through numerical studies.

  • PDF

Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass (축방향 왕복 운동을 하는 집중 질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석)

  • 홍정환;유홍희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.11
    • /
    • pp.868-874
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed for the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the size and the location of the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.

Three-Dimensional Field Equations, Equations of Motion, and Energy Functionals for Thick Shells of Revolution with Arbitrary Curvature and Variable Thickness (임의의 곡률과 변두께를 갖는 두꺼운 축대칭 회전 셸의 3차원적 장방정식, 운동 방정식, 에너지 범함수)

  • 강재훈;이은택;양근혁
    • Journal of KSNVE
    • /
    • v.11 no.1
    • /
    • pp.156-166
    • /
    • 2001
  • This work uses tensor calculus to derive a complete set of three-dimensional field equations well-suited for determining the behavior of thick shells of revolution having arbitrary curvature and variable thickness. The material is assumed to be homogeneous, isotropic and linearly elastic. The equations are expressed in terms of coordinates tangent and normal to the shell middle surface. The relationships are combined to yield equations of motion in terms of orthogonal displacement components taken in the meridional, normal and circumferential directions. Strain energy and kinetic energy functionals are also presented. The equations of motion and energy functionals may be used to determine the static or dynamic displacements and stresses in shells of revolution, including free and forced vibration and wave propagation.

  • PDF

Dynamics of a Micro Three-Axis Ring Gyroscope (마이크로 3축 링 자이로스코프의 동역학)

  • Choi, Sang-Hyun;Kim, Chang-Boo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.37-43
    • /
    • 2002
  • In this paper, we analyse and present mechanical dynamic characteristics of a micro-machined vibrating silicon ring gyroscope which can measure angular velocities about three orthogonal axes. The ring gyroscope has a ring connected to the gyroscope main body by support-ligaments which are arranged with cyclic symmetry. The natural modes of its vibration can be distinguished into the in-plane motion and the out-of-plane motion which are coupled by the gyro-effect due to the rotation of the gyroscope main body. The equations of motion, the response to angular velocities, and the relationships between the natural modes of vibration are derived and compared with the previous studies for the design of a micro three-axis ring gyroscope.

  • PDF