• Title/Summary/Keyword: 진동 및 안정성

Search Result 448, Processing Time 0.029 seconds

Evaluation of the Seismic Stability of Fill Dam by Shaking Table Tests (진동대 시험을 통한 Fill Dam의 내진 안정성 평가)

  • Yoon, Won-Sub;Chae, Young-Su;Park, Myeon-Gu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.4
    • /
    • pp.81-92
    • /
    • 2011
  • In order to understand evaluation of the seismic stability of a fill dam, we made chambers of 1:100, 1:70, and 1:50 (the ratio of the miniature), considering the law of similarity based on drawings of three representative cross sections. And we measured an increase in acceleration, excess pore water pressure, and vertical/horizontal displacement after applying Hachinohe wave (long period), Ofunato wave (short period), and artificial wave, complying with the domestic standards, in order to evaluate the stability and interaction between the ground, the structure, and fluids based on the measurements. As a result, we could observe that displacement of the target cross section was relatively small compared to the allowed level of 30 cm, ensuring proper stability for an earthquake. Regarding the acceleration measurements, the increase rate was 20% for Hachinohe wave and Ofunato wave but 30% for the artificial wave. With respect to the excess pore water pressure, it was lower than 1 (which is the permissible ratio for liquefaction) ensuring proper stability as well.

Coupled analysis for the influence of blasting-induced vibration on adjacent dam (발파하중이 인접 댐에 미치는 진동영향에 대한 연계해석적 검토)

  • Park, Inn-Joon;Kim, Sung-In;Nam, Kee-Chun;Kwak, Chang-Won
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.1
    • /
    • pp.41-50
    • /
    • 2004
  • The numerical investigation for the effects of blasting-induced vibration on adjacent dam and pore water pressure fluctuation was conducted through solid-water coupled analysis under dynamic loading. The stability of dam was examined by peak particle velocity of core. Pore water pressure distributions were calculated by steady state flow analysis using coupled analysis on ground water and blasting-induced vibration. The influence of pore water pressure and the effective stress distribution in the ground were also investigated. Furthermore, effective stress alteration was examined by applying Finn & Byrne Model to monitor the generation and dissipation of pore water pressure.

  • PDF

TRIO-CINEMA의 시스템 harness

  • Jeon, Je-Heon;Lee, Hyo-Jeong;Chae, Gyu-Seong;Seon, Jong-Ho;Jin, Ho;Lee, Dong-Hun;Lin, Robert P.;Immel, Thomas
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.199.1-199.1
    • /
    • 2012
  • TRIO-CINEMA(TRiplet Ionospheric Observatory-Cubesat for Ion, Neutron, Electron & MAgnetic field)는 지구근접공간에서의 미세 자기장 변화 및 중성입자의 검출을 목적으로 경희대학교와 UC Berkeley가 공동 개발하는 초소형위성이다. 초소형위성은 내부 공간이 협소하여 효율적인 공간배치 및 위성체발사 시 진동에도 견딜 수 있도록 harness가 제작되어야 한다. CINEMA는 OBC, EPS, 배터리, 수신기, IIB(Instrument Interface Board), MAGIC(MAGnetometer Imperial College) board, HVPS(High Voltage Power Supply)로 구성된 avionics bus와 MAGIC, STEIN(Supra Thermal Electron, Ion, Neutral)의 payload, Solar panel, UHF와 S-band 안테나로 구성되어 있다. Solar panel에서 생산된 전력은 EPS를 통해 배터리에 저장되고 PC104를 통해 avionics stack의 각 board로 전력이 분배된다. IIB는 탑재체 파트와 연결되어 이를 제어하고 HVPS에서 STEIN에 공급되는 고전압은 특수 와이어를 통해 연결되며 UHF 안테나와 S-band 안테나는 RF 케이블로 수신기와 송신기가 연결되어 있다. 각각의 harness는 케이블타이와 lacing tape로 위성체와 고정되며 커넥터는 고정 지지대를 제작하여 나사로 체결하였다. CINEMA에 적용된 harness는 진동시험과 열진공시험을 통해 harness와 시스템의 안정성이 검증 되었다.

  • PDF

Identification of Linear and Nonlinear Dynamic Stability Characteristics of a Medium-size High-speed Turbocharger Rotor Supported by 3-lobe Bearings (3-로브 베어링으로 지지된 중형 고속 터보차저 로터의 선형 및 비선형 동적 안정성 특성 규명)

  • Lee, An-Sung;Kim, Byung-Ok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.562-569
    • /
    • 2011
  • In this study linear and nonlinear dynamic stability characteristics of a medium-size high-speed turbocharger, whose rotor is supported by two 3-lobe journal bearings, are analyzed to evaluate and identify the effects of its bearing design variables. The rotor has the rated speed of 40,500 rpm and maximum continuous speed of 45,000 rpm. At first, utilizing the linear stability analysis method, bearing designs of yielding stable or unstable LogDecs as small as possible are searched by manipulating with machined bearing clearances and preloads. As next, utilizing the nonlinear analysis method, limit cycles of the rotor responses at the rated and maximum continuous speeds are simulated to check their acceptances. Results have shown that for the turbocharger rotor-bearing system considered, the 3-lobe journal bearing design with a smaller machined clearance and a larger preload are preferred for the stable rotor responses. More importantly, since there exists a good correlation between the linear and nonlinear stability analysis results, it is concluded that firstly the linear stability analysis method may be applied to screen quickly the ranges of bearing designs for stable or least unstable solutions and then, lastly the nonlinear stability analysis method may be deployed to check an absolute motion stability in terms of the limit cycle.

Stress Distribution of Buried Gas Transportation Pipeline According to Vehicle Load Velocity (지중 가스 수송 강관의 차량 이동 속도에 따른 응력 분포 특성)

  • Won, Jong-Hwa;Kim, Moon-Kyum;Yoo, Han-Kyu; Kim, Mi-Seoung
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.1
    • /
    • pp.7-12
    • /
    • 2008
  • In order to estimate the integrity and identify the dynamic characteristics of buried gas pipelines subjected to vehicle loads, FE analysis is performed based on the 'Highway and Local Road Design Criteria' and the 'KOGAS Guideline for Pipeline Management'. The FE model describes the current burial condition of Korea properly, and the DB-24 load model is adopted for this research. This study considers a varying velocity in the range of $40{\sim}160\;km/h$ and $P_i=8$ MPa(internal pressure) with depth cover, Z=1.5 m. Maximum stress occurs at v=80 km/h and decreases after v=80 km/h. The maximum induced stress by DB-24 loads is about 10 MPa. Under the design pressure, however, the analysis results show that API 5L Gr. X65 pipelines have sufficient integrity to withstand the vibration of vehicle loads.

  • PDF

Experimental Study of System Identification for Seismic Response of Building Structure (건축구조물의 지진응답제어를 위한 시스템 식별의 실험적 연구)

  • 주석준;박지훈;민경원;홍성목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.4
    • /
    • pp.47-60
    • /
    • 1999
  • The stability and efficiency of structural control systems depend on the accuracy of mathematical model of the system to be controlled. In this study, state equation models of a small scale test structure and an AMD(active mass damper) are obtained separately using OKID(observer/Kalman filter identification) which is a time domain system identification method. The test structure with each floor acceleration as outputs is identified for two inputs - the ground acceleration and the acceleration of the moving mass of AMD relative to the installation floor - individually and the two identified state equation models are integrated into one by model reduction method. The AMD is identified with the motor control signal as an input and the relative acceleration of the moving mass as an output, and it is shown that the identified model has large damping ratio and phase shift. The transfer functions and the time histories reconstructed from the identified models of the test model and the AMD match well with those measured from the experiment.

  • PDF

Running Stability Assessment of a Railway Vehicle using Roller Rig Test (주행시험대 시험을 이용한 철도차량의 주행안정성 평가 방법 고찰)

  • Park, Joon-Hyuk;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.20 no.5
    • /
    • pp.577-587
    • /
    • 2017
  • In the design process of dynamic characteristics of a railway vehicle, demand for analysis, testing and estimation methods of running stability are increasing as railway vehicle speed is increasing. Critical speed tests and estimation have been carried out using computer simulation or special test facilities, like roller rigs, because real track testing at critical speed is very dangerous. This paper introduces a test and assessment method for critical speed and estimates the validity using several roller rig tests. The test results show that it is difficult to estimate the critical speed using safety and instability assessment method in UIC 518, but that there is good agreement between the reduction of the equivalent damping ratio and the critical speed.

Predictions of Unbalanced Response of Turbo Compressor Equipped with Active Magnetic Bearings through System Identification (시스템 식별을 통한 자기베어링 장착 터보 압축기의 불평형 응답 예측)

  • Baek, Seongiki;Noh, Myounggyu;Lee, Kiwook;Park, Young-Woo;Lee, Nam Soo;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.97-102
    • /
    • 2016
  • Since vibrations in rotating machinery is a direct cause of performance degradation and failures, it is very important to predict the level of vibrations as well as have a method to lower the vibrations to an acceptable level. However, the changes in balancing during installation and the vibrational modes of the support structure are difficult to predict. This paper presents a method for predicting the unbalanced response of a turbo-compressor supported by active magnetic bearings (AMBs). Transfer functions of the rotor are obtained through system identification using AMBs. These transfer functions contain not only the dynamics of the rotor but also the vibrational modes of the support structure. Using these transfer functions, the unbalanced response is calculated and compared with the run-up data obtained from a compressor prototype. The predictions revealed the effects of the support structure, validating the efficacy of the method.

Effects of Transverse Shear Deformation and Rotary Inertia on Vibration of Rotating Polar Orthotropic Disks (극직교 이방성 회전원판의 진동에 대한 횡전단변형 및 회전관성 효과)

  • Kim, Dong-Hyun;Koo, Kyo-Nam
    • Composites Research
    • /
    • v.20 no.3
    • /
    • pp.43-49
    • /
    • 2007
  • Dynamic instability of rotating disks is the most significant factor to limit its rotating speed. Application of composite materials to rotating disks may enhance the dynamic stability leading to a possible design of rotating disks with lightweight and high speed. Whereas much work has been done on the effect of transverse shear and rotary inertia, called Timoshenko effect, on the dynamic behavior of plates, there is little work on the correlation between the effect and the rotation of disk, especially nothing in case of composite disks. The dynamic equations of a rotating composite disk are formulated with the Timoshenko effect and the vibrational analysis is performed by using a commercial package MSC/NASTRAN. According to the results, the Timoshenko effect goes seesaw in some modes, unlike the well-known fact that the effect decreases as the rotating speed increases. And it can be concluded, based only on the present results, that decrement of the Timoshenko effect by disk rotation grows larger as the thickness ratio decreases, the diameter ratio increases, the modulus ratio increases, and the mode number increases.

Evaluation on Structural Stability According to Steering Wheel Type (조향휠의 유형에 따른 구조안정성평가)

  • Han, Moon-Sik;Cho, Jae-Ung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.5
    • /
    • pp.733-740
    • /
    • 2012
  • This paper studies with structural and vibration analysis to evaluate the structural safety according to the types of steering wheels. This study models are two, three and four spoke types. As the number of spokes increases, the maximum equivalent stress becomes smaller but the maximum total deformation becomes a little higher. The natural frequency at three models are shown from 180 to 230Hz as the maximum deformation. The frequency responses as maximum amplitude displacement are happened at 200Hz, 500Hz and 500Hz respectively. In this study, the steering wheel with three spoke type is shown to become suitable at durability and production.