• Title/Summary/Keyword: 진동 모델링

Search Result 769, Processing Time 0.025 seconds

Nonproportional viscous damping matrix identification using frequency response functions (주파수 응답 데이터를 이용한 비비례 점성감쇠행렬 추정)

  • Min, Cheon-Hong;Kim, Hyung-Woo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.369-373
    • /
    • 2016
  • Accurate identification of damping matrix in structures is very important for predicting vibration responses and estimating parameters or other characteristics affected by energy dissipation. In this paper, damping matrix identification method that use normal frequency response functions, which were estimated from complex frequency response functions, is proposed. The complex frequency response functions were obtained from the experimental data of the structure. The nonproportional damping matrix was identified through the proposed method. Two numerical examples (lumped-mass model and cantilever beam model) were considered to verify the performance of the proposed method. As a result, the damping matrix of the nonproportional system was accurately identified.

Modeling and Theoretical Analysis of Thermodynamic Characteristic of Nano Vibration Absorber (나노 진동 흡수기의 모델링 및 열역학적 특성 해석에 대한 이론적 연구)

  • 문병영;정성원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.93-99
    • /
    • 2003
  • In this study, new shock absorbing system is proposed by using nano-technology based on the theoretical analysis. The new shock absorbing system is complementary to the hydraulic damper, having a cylinder-piston-orifice construction. Particularly for new shock absorbing system, the hydraulic oil is replaced by a colloidal suspension, which is composed of a porous matrix and a lyophobic fluid. The matrix of the suspension is consisted of porous micro-grains with a special architecture: they present nano-pores serially connected to micro-cavities. Until now, only experimentally qualitative studies of new shock absorbing system have been performed, but the mechanism of energy dissipation has not been clarified. This paper presents a modeling and theoretical analysis of the new shock absorbing system thermodynamics, nono-flows and energy dissipation. Compared with hydraulic system, the new shock absorbing system behaves more efficiently, which absorb a large amount of mechanical energy, without heating. The theoretical computations agree reasonably well with the experimental results. As a result. the proposed new shock absorbing system was proved to be an effective one, which can replace with the conventional one.

Dynamic Analysis of Offshore Structures Considering External Fluid-Structure Interaction (외부유체-구조물의 상호작용을 고려한 해양구조물의 동적해석)

  • Hwang, Chul-Sung;Paik, In-Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.271-281
    • /
    • 2005
  • The effects of radiation damping is used to compensate the truncated boundary which is relatively close to the structure-fluid interface in the fluid element surrounding the submerged structures. An efficient ring element is presented to model the shell and fluid element which fully utilizes the characteristics of the axisymmetry. The computational model uses the technique which separate the meridional shape and circumferential wave mode and gets similar result with the exact solution in the eigenvalues and the earthquake analysis. The fluid-structure interaction techniques is developed in the finite element analysis of two dimensional problems using the relations between pressure, nodal unknown acceleration and added mass assuming the fluid to be invicid, incompressible and irrotational. The effectiveness and efficiency of the technique is demonstrated by analyzing the free vibration and seismic analysis using the added mass matrix considering the structural deformation effect.

Parametric Design and Wind Load Application for Retractable Large Spatial Structures (개폐식 대공간 구조물의 파라메트릭 설계와 풍하중 적용)

  • Kim, Si-Uk;Joung, Bo-Ra;Kim, Chee-Kyeong;Lee, Si Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.341-348
    • /
    • 2019
  • The purpose of this study is to model and analyze retractable large spatial structures by applying parametric modeling techniques. The modeling of wind loads in the analysis of typical structures including curved surfaces can be error-prone, and the processing time increases dramatically when there are many types of variables. However, the method based on StrAuto that was developed in previous research, facilitates the efficacious assignment of wind loads to structures and the rapid arrival of conclusions. As a result, it is possible to compare alternatives with various loads, including wind loads, to determine an optimal alternative much faster than the existing process. Further, it is almost impossible to directly input the wind load by calculating the area of an irregularly curved surface. However, the proposed method automatically assigns the wind load, which allows for automatic optimization in a structural analysis system. The approach was applied and optimized using several models, and the results are presented.

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅰ) - Computer modeling - (굴절파 GRM 해석방법을 응용한 고경사 단층 인지(Ⅰ) - 컴퓨터 모델링 연구 -)

  • Kim, Gi Yeong
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.57-64
    • /
    • 1999
  • To effectively identify near-surface faults with vertical slips from seismic refraction data, the GRM interpretation technique is tested and investigated in terms of various parameters through computer modeling. A characteristic change in shape of the velocity-analysis function near faults is noticed, and a new strategy of `Slope Variation Indicator (SVI)' is developed and tested in this study. The SVI is defined as a first horizontal derivative of the difference of velocity analysis functions for a large XY value and a small one, respectively. As the dip of refractor decreases and as the difference in XY value increases, the peak value of SVI increases and its duration decreases. Consequently, the SVI indicates accurately the location of buried fault in the test models. The SVI is believed to be an efficient tool in seismic refraction method to investigate location and distribution of shallowly buried faults.

  • PDF

Internet of Things (IoT) Based Modeling for Dynamic Security in Nuclear Systems with Data Mining Strategy (데이터 마이닝 전략을 사용하여 원자력 시스템의 동적 보안을 위한 사물 인터넷 (IoT) 기반 모델링)

  • Jang, Kyung Bae;Baek, Chang Hyun;Kim, Jong Min;Baek, Hyung Ho;Woo, Tae Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.7 no.1
    • /
    • pp.9-19
    • /
    • 2021
  • The data mining design incorporated with big data based cloud computing system is investigated for the nuclear terrorism prevention where the conventional physical protection system (PPS) is modified. The networking of terror related bodies is modeled by simulation study for nuclear forensic incidents. It is needed for the government to detect the terrorism and any attempts to attack to innocent people without illegal tapping. Although the mathematical algorithm of the study can't give the exact result of the terror incident, the potential possibility could be obtained by the simulations. The result shows the shape oscillation by time. In addition, the integration of the frequency of each value can show the degree of the transitions of the results. The value increases to -2.61741 in 63.125th hour. So, the terror possibility is highest in later time.

Analysis of Vibration Characteristics of a Full Vehicle Model Using Substructure Synthesis Method (부분구조합성법을 이용한 전차량 모델의 진동 특성 분석)

  • Kim, Bum-Suk;Kim, Bong-Soo;Yoo, Hong-Hee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.5
    • /
    • pp.519-525
    • /
    • 2010
  • The finite element (FE) method is generally used to model and simulate the physical behavior of large structures, such as passenger vehicles or aircraft. However, FE analysis involves a very large computation time and cost for developing the analysis model. Therefore, the vibration characteristics of large structural systems are often analyzed using the component mode synthesis (CMS) method, which is one of the substructure synthesis methods. In this study, the vibration characteristics of passenger vehicles are analyzed by using the substructure synthesis method. A passenger vehicle model, which includes a vehicle body, suspension systems, and a sub-frame, is presented. The physical components of the vehicle system are modeled as equivalent substructures using the Craig-Bampton method of CMS. The vibration characteristics, such as the natural frequencies and mode shapes and frequency response, of the vehicle system are determined. The effects of variations in some design parameters on the vibration characteristics of the full vehicle model are also investigated.

Rotor Track and Balance of a Helicopter Rotor System Using Modern Global Optimization Schemes (최신의 전역 최적화 기법에 기반한 헬리콥터 동적 밸런싱 구현에 관한 연구)

  • You, Younghyun;Jung, Sung Nam;Kim, Chang Ju;Kim, Oe Cheul
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.7
    • /
    • pp.524-531
    • /
    • 2013
  • This work aims at developing a RTB (Rotor Track and Balance) system to alleviate imbalances originating from various sources encountered during blade manufacturing process and environmental factors. The analytical RTB model is determined based on the linear regression analysis to relate the RTB adjustment parameters and their track and vibration results. The model is validated using the flight test data of a full helicopter. It is demonstrated that the linearized model has been correlated well with the test data. A hybrid optimization problem is formulated to find the best solution of the RTB adjustment parameters using the genetic algorithm combined with the PSO (Particle Swarm Optimization) algorithm. The optimization results reveal that both track deviations and vibration levels under various flight conditions become decreased within the allowable tolerances.

Noise Control of Plate Structures with Optimal Design of Multiple Piezoelectric Actuators (복수 압전 가진기의 최적 설계를 통한 판구조물의 소음제어)

  • 김재환
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.263-270
    • /
    • 1996
  • Noise control of a plate structure with multiple disk shaped piezoelectric actuators is studied. The plate is excited by an acoustic pressure field produced by a noise source located below the plate. Finite element modeling is used for the plate structure that supports a combination of three dimensional solid, flat shell and transition elements. The objective function, in the optimization procedure, is to minimize the sound energy radiated onto a hemispherical surface of given radius and the design parameters are the locations and sizes of the piezoelectric actuators as well as the amplitudes of the voltages applied to them. Automatic mesh generation is addressed as part of the modeling procedure. Numerical results for both resonance and off resonance frequencies show remarkable noise reduction and the optimal locations of the actuators are found to be close to the edges of the plate structure. The optimized result is robust such that when the acoustic pressure pattern is changed, reduction of radiated sound is still maintained. The robustness of an optimally designed structure is also tested by changing the frequency of the noise source using only the actuator voltages as design parameters.

  • PDF

A Study on Turbulent Wall Pressure Fluctuations Using a Coherent Structure Model (응집구조 모델을 이용한 난류 벽면 압력변동에 대한 연구)

  • Ahn, Byoung-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.405-414
    • /
    • 2007
  • In recent years, experimental and theoretical studies show that turbulent flows looking disordered have a definite structure produced repetitively with visible order. As a core structure of turbulence, hairpin vertices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work, fully developed typical hairpin vortices are focused and the associated surface pressure distributions and their corresponding spectra are estimated. On the basis of the attached eddy model, the overall surface pressure spectra are represented in terms of the eddy size distribution. The model is validated by comparison of predicted wavenumber spectra with existing empirical models, the results of direct numerical simulation (DNS) and also spatial correlations with experimental measurements.