• Title/Summary/Keyword: 진동 모델링

Search Result 769, Processing Time 0.025 seconds

Finite Element Modeling for rubber grommet to reduce vibration refrigerator (냉장고 진동 저감을 위한 그로멧의 유한요소모델링)

  • Kook, Jung-Hwan;Thuy, Tran Ho Vinh;Kim, Jung-Seon;Wang, Se-Myung;Lee, Dong-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.947-950
    • /
    • 2007
  • In this study, vibration analysis of a refrigerator was carried out to reduce vibration by considering grommet. When the refrigerator machine room is modeled by finite element method, spring elements are added to constructions of the FEmodel for each component and update. To design the grommet of refrigerator, FEmodel must have vibration characteristics of each components such as baseplate, pipe and compressor it self. The modal analyses are conducted to validate suggested approach when the components of machine room are assembled together. And, in this study, optimal design of grommet is conducted to avoid the resonance at the operating frequency of refrigerator. The experimental and FEM result of suggested design showed good agreement and are presented here.

  • PDF

Vibration Analysis of Separation Screen for a Recycling of Construction Wastes (건설폐기물의 재활용을 위한 분리스크린의 진동해석)

  • Kim, K.K.;Kim, M.S.;Son, K.;Kim, K.H.;Moon, B.Y.
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1057-1062
    • /
    • 2007
  • The purpose of this study is to find out design parameters of vibrating screen, such as particles motion, specific gravity, shape, and kinetic friction. In order to approach this problem, four materials of construction wastes, wood, styrofoam, concrete, and sand are used for dynamic modeling. To present friction between the particles material and tilt plates material, these particles model is applied in order to verify effectively. Generally, the vibrating screen is composed of three assemblies such as screen, wastes guide, supported of screen. This model regards vibrator as system of screen fixed tilt plates. The model is analyzed to present what kind of particles motion while the system is vibrating. and this vibration system has been implemented in a ADAMS dynamaic program. This modeling is consist of dynamic model separation state on particle size. This study make good technique to verify in theory.

  • PDF

Design of a Side Mirror for Passenger Vehicle Based on Vibration Characteristics (진동 특성을 고려한 승용차용 사이드 미러의 설계)

  • Son, Sang-Uk;Son, Kwon
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.703-713
    • /
    • 1999
  • A side mirror is an important safety tool with which the driver can observe objects out of sight. This paper presents an organized design technology for the side mirror of improved vibration characteristics. Resonance response to forced vibration is critical to observability through the mirror to be designed. This study aims at the reduction of vibration level by the modification of mirror structures and consequent effects are predicted by computer simulations. We used a three-dimensional solid modeling and the modal and frequency analysis ; Pro/Engineer is used as a solid modeler; Pro/Mechanica for vibration analysis. The simulation results are compared with those obtained in experiemnts to check the validity by the three-dimensional modeling. The design technique of side mirror has been established and found to be effective in vibration analysis of redesigned parts.

  • PDF

An efficient modeling method for open cracked beam structures (열린 균열이 있는 보의 효율적 모델링)

  • Kim, M.D.;Choi, S.H.;Hong, S.W.;Lee, C.W.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.725-730
    • /
    • 2002
  • This paper presents an efficient modeling method for open cracked beam structures. An equivalent bending spring model is introduced to represent the structural weakening effect in the presence of open cracks. The proposed method adopts the exact dynamic element method (EDEM) to avoid the difficulty and numerical errors in association with re-meshing the structure. The proposed method is rigorously compared with a commercial finite element code. Experiments are also performed to validate the proposed modeling method. Finally, a diagnostic scheme for open cracked beam structures is proposed and demonstrated through a numerical example.

  • PDF

A study on vibration characteristics caused by backlash of gearbox in escalator with chain-sprocket drive mechanism (체인-스프라켓 메커니즘을 갖는 에스컬레이터에서 기어박스 백래시로 인한 이상진동에 관한 연구)

  • Kwon, Yi-Sug;Park, Seon-Ryong;Suh, Jong-Ho;Hong, Seong-Wook;Park, No-Gill
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.238-243
    • /
    • 2002
  • This paper presents an improved escalator dynamic model so as to reflect the experimental observation on the pseudo-resonance affected by load applied. The experimental evidence reveals that backlash of gearbox as well as sag of driving chain are most critical factors to the pseudo-resonance in escalators. The dynamic model effectively reflects vibration characteristics measured in real escalators with respect to different conditions of driving chain and the number of passengers. For validation of the dynamic model developed, numerical results from the model are compared with experimental results. The developed model and its simulation results are used rigorously for the design of escalator systems in enhancing the ride comfort.

  • PDF

A Study on the Finite Element Modeling Methods of Large Navy Shipboard Equipment Attached to the Top and Bottom Foundations for DDAM (상.하 받침대를 갖는 대형 함정 탑재장비의 DDAM 해석을 위한 유한요소 모델링 기법에 관한 연구)

  • Song, Oh-Seop;Kim, Yong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.4 s.121
    • /
    • pp.317-323
    • /
    • 2007
  • Non-contact underwater explosions against surface ships could cause extensive equipment damage and render the ship inoperative. As an analytical method, DDAM(dynamic design and analysis method) is used for ship shock design. In this paper, in order to verify the finite element model of large shipboard equipment, modal test of equipment was performed. Major objective of this paper is to describe shock analysis methodology for large shipboard equipment attacked to the top and bottom foundations.

A Study on Joint stiffness Modeling Method and Joint Design Factors for Low Frequency Vibration (차량의 결합부 강성 모델링 기법 및 저진동 영역에 영향을 미치는 인자 연구)

  • Sung, Young-Suk;Kang, Min-Seok;Yim, Hong-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.202-209
    • /
    • 2007
  • Vehicle body frame stiffness affects the dynamic and static characteristics. Vehicle frame structural performance is greatly affected by crossmember and joint design. While the structural characteristics of these joints vary widely, there is no known tool currently in use that quickly predicts joint stiffness early in design cycle. This paper presents the joint design factors affecting on low frequency vibration. The joint factors are joint panel thickness, section property, flange width and weld point space. To study the effect on vehicle low frequency vibration, case studies for these factors are performed. And Sensitivity analysis for section property is performed. The result can present design guide for high-stiffness vehicle.

  • PDF

Modeling and Validation of RK4 Multi Axis Rotor system (RK4 다축 회전체 시스템의 동역학모델링 및 검증)

  • Kwonn, Ki Beom;Han, Jeong Sam;Jeon, ByungChul;Jung, Joonha;Youn, Byeng D.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.233-237
    • /
    • 2014
  • In this paper, the finite element modeling of the RK4 rotor kit system (RK4) and then frequency analysis and transient analysis, and was compared with the actual experimental results. RK4 manufactured by General Electric for the purpose of education and research. It is composed of two shaft, Two shaft is connected using a flexible coupling, one disk is mounted. The analytical model is modeled by using the ANSYS finite element analysis program commercially available. Based on impact hammer test results, material properties and the stiffness of the bearing and coupling was tuned. Considering the operating conditions and the vibration response of the analytical model were compared with experimental results.

  • PDF

Modeling and Vibration Control of the Precision Positioning Stage with Flexible Hinge Mechanism (유연힌지형 정밀스테이지의 모델링 및 진동제어)

  • Kim, J.I.;Hwang, Y.S.;Kim, Y.S.; Kim, I.S.; Kim, K.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.04a
    • /
    • pp.239-244
    • /
    • 2009
  • This paper suggests a precision positioning control technique of a precision positioning stage with coupling effects. The precision positioning stage is supported by four flexible spring hinges and driven by two piezoelectric actuators. The dynamic characteristics of the precision positioning stage is modeled and identified by the FEM analysis. The dynamic characteristics of the stage are also identified by the frequency domain modeling technique based on the experimental data. Reliability of two modeling methods is examined by comparing the numerically and experimentally produced responses of the stage. This paper proposes a sliding mode control technique with integrator to improve the tracking ability of the precision positioning stage to the complex input signal using. To demonstrate the effectiveness of the proposed modeling schemes and control algorithm, experiment validations are performed.

  • PDF

지그재그 보요소를 이용한 응력해석 및 진동해석

  • Lee, Deog-Gyu
    • Aerospace Engineering and Technology
    • /
    • v.3 no.2
    • /
    • pp.149-159
    • /
    • 2004
  • Dynamic analysis of laminated beams with a embedded damping layer under tensional and compressive axial load is investigated. Improved Layer-Wise Zig-Zag Beam Theory and Interdependent Kinematic Relation are incorporated to model the laminated beams with a damping layer and a corresponding beam zig-zag finite element is developed. Flexural frequencies and modal loss factors under tension or compression axial load are calculated based on Complex Eigenvalue Method. The effects of the axial tensional and compressive load on the frequencies and loss factors are discussed.

  • PDF