• Title/Summary/Keyword: 진동적회전

Search Result 442, Processing Time 0.029 seconds

Evaluation of Vertical Vibration Performance of Tridimensional Hybrid Isolation System for Traffic Loads (교통하중에 대한 3차원 하이브리드 면진시스템의 수직 진동성능 평가)

  • Yonghun Lee;Sang-Hyun Lee;Moo-Won Hur
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.1
    • /
    • pp.70-81
    • /
    • 2024
  • In this study, Tridimensional Hybrid Isolation System(THIS) was proposed as a vibration isolator for traffic loads, combining vertical and horizontal isolation systems. Its efficacy in improving serviceability for vertical vibration was analytically evaluated. Firstly, for the analysis, the major vibration modes of the existing apartment were identified through eigenvalue analysis for the system and pulse response analysis for the bedroom slab using commercial structural analysis software. Subsequently, a 16-story model with horizontal, vertical and rotational degrees of freedom for each slab was numerically organized to represent the achieved modes. The dynamic analysis for the measured acceleration from an adjacent ground to high-speed railway was performed by state-space equations with the stiffness and damping ratio of THIS as variables. The result indicated that as the vertical period ratio increased, the threshold period ratio where the slab response started to be suppressed varied. Specifically, when the period ratio is greater than or equal to 5, the acceleration levels of all slabs decreased to approximately 70% or less compared to the non-isolated condition. On the other hand, it was ascertained that the influence of damping ratios on the response control of THIS is inconsequential in the analysis. Finally, the improvement in vertical vibration performance of THIS was evaluated according to design guidelines for floor vibration of AIJ, SCI and AISC. It was confirmed that, after the application of THIS, the residential performance criteria were met, whereas the non-isolated structure failed to satisfy them.

Aeromechanical stability analysis and control of helicopter rotor blades (헬리콥터 회전날개깃의 안정성 해석과 제어)

  • Kim, J.S.;Chattopadhyay, Aditi
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.9 no.1
    • /
    • pp.59-69
    • /
    • 2001
  • The rotor blade is modeled using a composite box beam with arbitrary wall. The active constrained damping layers are bonded to the upper and lower surfaces of the box beam to provide active and passive damping. A finite element model, based on a hybrid displacement theory, is used in the structural analysis. The theory is capable of accurately capturing the transverse shear effects in the composite primary structure, the viscoelastic and the piezoelectric layers within the ACLs. A reduced order model is derived based on the Hankel singular value. A linear quadratic Gaussian (LQG) controller is designed based on the reduced order model and the available measurement output. However, the LQG control system fails to stabilize the perturbed system although it shows good control performance at the nominal operating condition. To improve the robust stability of LQG controller, the loop transfer recovery (LTR) method is applied. Numerical results show that the proposed controller significantly improves rotor aeromechanical stability and suppresses rotor response over large variations in rotating speed by increasing lead-lag modal damping in the coupled rotor-body system.

  • PDF

Fault Classification for Rotating Machinery Using Support Vector Machines with Optimal Features Corresponding to Each Fault Type (결함유형별 최적 특징과 Support Vector Machine 을 이용한 회전기계 결함 분류)

  • Kim, Yang-Seok;Lee, Do-Hwan;Kim, Seong-Kook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1681-1689
    • /
    • 2010
  • Several studies on the use of Support Vector Machines (SVMs) for diagnosing rotating machinery have been successfully carried out, but the fault classification depends on the input features as well as a multi-classification scheme, binary optimizer, kernel function, and the parameter to be used in the kernel function. Most of the published papers on multiclass SVM applications report the use of the same features to classify the faults. In this study, simple statistical features are determined on the basis of time domain vibration signals for various fault conditions, and the optimal features for each fault condition are selected. Then, the optimal features are used in the SVM training and in the classification of each fault condition. Simulation results using experimental data show that the results of the proposed stepwise classification approach with a relatively short training time are comparable to those for a single multi-class SVM.

A Study of Analytical Integrity Estimations for the Structure and Rotor System of an Emergency Diesel Generator (비상디젤발전기의 회전체 및 구조물 해석적 건전성 평가에 관한 연구)

  • Kim, Chae-Sil;Choi, Heon-Oh;Jung, Hoon-Hyung
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.2
    • /
    • pp.79-86
    • /
    • 2014
  • This paper describes an integrity evaluation method for emergency diesel generator(EDG) and rotor part of EDG. EDG is a very important equipment in the nuclear power plant(NPP). EDG supplies electricity to the safety-related equipments for the safety shut down of NPP in an emergency situation of earthquake. The safety of the rotor part of EDG is also important during seismic impact from earthquake. The finite element modelling of the EDG including rotor part was constructed. The modal analysis of EDG was firstly performed. The first natural frequency was calculated and revealed higher than the cutoff frequency of seismic spectrum. Then the stress analysis was done to compare with the allowable stress. The safety of the rotor part was investigated by the finite element analysis of the rotor and journal bearing interaction to find film thickness and critical speed. The seismic load was applied to rotor part in a manner that the load was a weighted static load. Analysis results showed that the maximum stress was within the range of allowable stress and the film thickness is larger than the permissible minimum thickness, and the critical speed was out of the operating speed. Hence, the structural and dynamic integrity of EDG could be confirmed by the numerical analysis method used in this paper. However, dynamic analysis of a rotating rotor and supporting bearing with the seismic impact needs to be investigated in a more rigorous method since the seismic load to the rotating part complicates the behavior of rotating system.

Free Vibrations of Linearly Tapered I-Beams (선형(線形) 변단면(變斷面) I-형(型) 부재(部材)의 자유진동(自由振動))

  • Lee, Yong Woo;Min, Kyung Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.5
    • /
    • pp.1023-1031
    • /
    • 1994
  • The closed forms of consistent mass matrix with rotational inertia matrix are developed for free vibration analysis in space sutructures containing linearly tapered members with cross section of thin-walled I-sections. The exact displacement functions are used for formulating mass matrices. The very small slopes of the tapered member are used in usual practice, such that the series expansion forms of these are also developed to avoid numerical failure in vibration analysis. Significant improvements of accuracy and efficiency of free vibation analysis are achieved by using the mass matrices developed in this study. Frequencies of free vibation of tapered members are compared with solutions based upon stepped representation of beam element in the ANSYS. The mass matrices presented in this study can be used for the free vibration analysis of tapered and prismatic members.

  • PDF

Validation for Performance and Hub Vibratory Load Analyses of Lift-offset Coaxial Rotors in Wind-Tunnel Tests (풍동 시험용 Lift-offset 동축 반전 로터에 대한 성능 및 허브 진동 하중 해석의 검증 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.497-505
    • /
    • 2022
  • Performance and hub vibratory load analyses for a lift-offset coaxial rotor are conducted using a rotorcraft comprehensive analysis code, CAMRAD II. The lift-offset coaxial rotor is trimmed to match the total rotor thrust(lift-offset coaxial rotor's thrust) or the individual rotor thrust(upper and lower rotor thrusts, respectively) in this study. The individual rotor's lift and torque, and effective rotor lift to drag ratio for the total rotor are investigated for various advance ratios and lift-offset values. The two result sets with different trim methods are similar to each other and they are correlated well with the wind-tunnel test results. Therefore, the present study using CAMRAD II validates successfully the aeromechanics modeling and analysis techniques for the lift-offset coaxial rotor.

A study on vibration control of the engine body for a large scale diesel engine using the semi-active controlled hydraulic type of top bracing (준능동형 유압식 톱브레이싱을 이용한 선박용 저속 2행정 디젤엔진의 본체 진동제어)

  • Lee, Moon-Seek;Kim, Yang-Gon;Hwang, Sang-Jae;Lee, Don-Chool;Kim, Ue-Kan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.632-638
    • /
    • 2014
  • Nowadays, as part of an effort to increase the efficiency of propulsion shafting system, the revolution of the main diesel engine in CMCR(Contract Maximum Continuous Rating) is reduced whereas the stiffness of hull structure supporting the main diesel engine is relatively flexible. However, vibration problems related with resonant response of main diesel engine are increasing although top bracing is installed between the main diesel engine and the hull structures to increase natural frequency of engine body above CMCR to avoid resonant phenomenon. In this study, the dynamic characteristic of top bracing is reviewed by analyzing measuring results of general cargo ships which apply the hydraulic type instead of the friction type to control the natural frequency and the vibration of the engine body. Moreover, considering the vibration characteristic of the engine body and the hydraulic type of the top bracing by varying the number of top bracing, authors suggest the more effective way to control the vibration of the engine body despite of lower stiffness of the hull structure than in the past when the hydraulic type of top bracing is used.

Finite Element Modeling of a Piezoelectric Sensor Embedded in a Fluid-loaded Plate (유체와 접한 판재에 박힌 압전센서의 유한요소 모델링)

  • Kim, Jae-Hwan
    • Journal of KSNVE
    • /
    • v.6 no.1
    • /
    • pp.65-70
    • /
    • 1996
  • The sensor response of a piezoelectric transducer embedded in a fluid loaded structure is modeled using a hybrid numerical approach. The structure is excited by an obliquely incident acoustic wave. Finite element modeling in the structure and fluid surrounding the transducer region, is used and a plane wave representation is exploited to match the displacement field at the mathematical boundary. On this boundary, continuity of field derivatives is enforced by using a penalty factor and to further achieve transparency at the mathematical boundary, drilling degrees of freedom (d.o.f.) are introduced to ensure continuity of all derivatives. Numerical results are presented for the sensor response and it is found that the sensor at that location is not only non-intrusive but also sensitive to the characteristic of the structure.

  • PDF

The Performance Evaluation of the Adaptive UPC Mechanism in ATM (ATM망에서의 적응적 UPC 메커니즘의 성능 평가)

  • 안옥정
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 1994.10a
    • /
    • pp.11-11
    • /
    • 1994
  • 트래픽의 흐름을 조절하고 ATM 네트워크 자원의 사용을 최적화하기위해서는 폭주로 인한 성능 저하를 막기 위한 적절한 제어가 필요하다. 기존의 사용자 감시 제어(UPC) 메커니즘이 네트워크의 상황과는 관계없이 매우 불안정한 예방적 기능만을 수행하였고, qvj로 인해 셀 지연을 가중시키는 한계점을 갖고 있었다. 본 논문은 OAM 셀을 이용하여 네트워크의 상태에 따라 능동적으로 반응하는 적응적 사용자 감시 제어 메커니즘을 제안하고ㅡ 버퍼로 인한 지연을 고려하여 서비스의 한층 더 높이고자 한다. 제시한 사용자 감시 제어방식은 OAM 셀이 주는 정보를 바탕으로 네트워크 내의 상황을 판단하여 사용자가 요구한 서비스의 질을 고려할 수 있도록 리키율과 버퍼의 문턱값을 조정하였다. 네트워크가 분주시에는 리키율을 낮추고 버퍼를 줄여서 네트워크 내에 유입되는 셀을 막는 역할을 하고 네트워크가 한가할 때는 리키율을 높히고 버퍼를 늘여서 빠르게 네트워크 내로 셀이 유일도리 수 있\ulcorner 한다. 폭주 발생 시에는 셀의 유입을 막고 푹주 상태가 해결될때까지 스페이서의 작동을 멈춘다. 본 논문에서 제시한 사용자 감시 제어 메커니즘의 트래픽 소스 모델은 IPP로 모델링하였고, 트래픽은 음성과 고속 데이터를 중심으로 시뮬레이션하였다. 음성과 고속 대이타 각각의 경우에 시뮬레이션한 결과를 기존의 방식과 비교, 분석한 결과에서 음성에서는 버퍼지연이 대폭 줄였고 고속 데이터인 경우에는 셀 손실율이 줄어드는 것을 볼 수 있었다. 따라서 제시한 방식에 의해 사용자가 요구하는 서비스의 질을 유지하면서 동시에 네트워크의 자원을 효율적으로 사용하였음을 알 수있었다.에 적합한가를 고찰하였다.베이터에 의한 아파트의 소음 및 진동에 관하여 그 현황, 원인 그리고 대책에 관한여 논하고자 한다.감 방법을 연구하였고, T.Sakai는 5자유도 모델을 이용하여 엔진 공회전시 발생하는 치타음에 대해 이론과 실험을 통해 해석하고, 엔진 회전수 변동, 클러치 특성, 변속기의 드래그(drag) 토크의 영향과 치타음 저감을 위한 개선된 클러치 특성을 제시하였다. 이 외에도 Thomas C.T.와 E.P.Petkus는 특정 차량에 대한 동력전달계의 비틀림 진동 현상에 대해 연구하였다. 이러한 연구들로 볼 때, 자동차 동력전달계에서 발생하는 진동은 이론과 실험을 통해 그 해석이 가능하며 설계에 매우 유용하게 이용되고 있음을 알 수 있다. 따라서, 본 연구는 4 실린더 4 싸이클 1.5 L 엔진을 장착한 경승용차의 실차 주행실험을 통해 가속 페달의 급조작에 따른 차체의 종진동 현상을 측정하고, 엔진-변속기-타이어-차체의 반환정계 4자유도 진동모델로 시뮬레이션을 수행하여 실차 주행실험의 결과치와 비교, 분석한 후 클러치 비틀림 특성을 비롯한 자동차 동력전달계의 각 설계인자들이 차체의 종진동에 어떠한 영향을 미치는가를 해석하고자 한다.be presented.LIFO, 우선 순위 방식등을 선택할 수 있도록 확장하였다. SIMPLE는 자료구조 및 프로그램이 공개되어 있으므로 프로그래머가 원하는 기능을 쉽게 추가할 수 있는 장점도 있다. 아울러 SMPLE에서 새로이 추가된 자료구조와 함수 및 설비제어 방식등을 활용하여 실제 중형급 시스템에 대한 시뮬레이션 구현과 시스템 분석의 예를 보인다._3$", chain segment,

  • PDF

An integrated development methodology of low noise accessory drive system in internal combustion engines (내연기관의 저소음 보기류구동 시스템을 위한 통합 개발 방법론)

  • Park, Keychun;Kong, Jinhyung;Lee, Byunghyun
    • The Journal of the Acoustical Society of Korea
    • /
    • v.35 no.3
    • /
    • pp.183-191
    • /
    • 2016
  • A systematic development process for the low noise FEAD (Front End Accessory Drive) system is presented by combining CAE (Computer Aided Engineering) and the experimental rig test. In the estimation of the belt drive noise, two main difficulties arise from the high non-linearity due to the stick-slip contacts on the interfaces of the belt and pulleys, and the interaction of the belt drive system with the powertrain rotational parts. In this work, a recently developed analysis method of the belt drive has been employed considering powertrain rotational dynamics. As results, it shows good correlation with the vehicle tests in various operational modes. The established model has been employed to validate the new design improving the stick-slip noise of the problematic FEAD system. Furthermore, the best proposal of FEAD system in terms of functionality [NVH (Noise, Vibration and Harshness), fuel economy, cost. etc.] has been suggested in the concept design stage of new engine through this presented methodology.