• Title/Summary/Keyword: 진동대류

Search Result 66, Processing Time 0.025 seconds

Influence of UTLS Ozone on the QBO-MJO Connection: A Case Study Using the GloSea5 Model (상부 대류권-하부 성층권 오존이 성층권 준 2년주기 진동과 매든-줄리안 진동 상관성에 미치는 영향: GloSea5 이용 사례)

  • Oh, Jiyoung;Son, Seok-Woo;Back, Seung-Yoon
    • Atmosphere
    • /
    • v.32 no.3
    • /
    • pp.223-233
    • /
    • 2022
  • Recent studies have shown that Madden-Julian Oscillation (MJO) is modulated by Quasi-Biennial Oscillation (QBO) during the boreal winter; MJO becomes more active and predictable during the easterly phase of QBO (EQBO) than the westerly phase (WQBO). Despite growing evidences, climate models fail to capture the QBO-MJO connection. One of the possible reasons is a weak static stability change in the upper troposphere and lower stratosphere (UTLS) by neglecting QBO-induced ozone change in the model. Here, we investigate the possible impact of the ozone-radiative feedback in the tropical UTLS on the QBO-MJO connection by integrating the Global Seasonal Forecasting System 5 (GloSea5) model. A set of experiments is conducted by prescribing either the climatological ozone or the observed ozone at a given year for the EQBO-MJO event in January 2006. The realistic ozone improves the temperature simulation in the UTLS. However, its impacts on the MJO are not evident. The MJO phase and amplitude do not change much when the ozone is prescribed with observation. While it may suggest that the ozone-radiative feedback plays a rather minor role in the QBO-MJO connection, it could also result from model biases in UTLS temperature and not-well organized MJO in the model.

Effect of Outer Edge Flame on Flame Extinction in Counterflow Diffusion Flames (대향류 확산화염에서 에지화염이 화염소화에 미치는 영향)

  • Chung, Yong-Ho;Park, Dae-Geun;Park, Jeong;Yun, Jin-Han;Kwon, Oh-Boong;Keel, Sang-In
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.2
    • /
    • pp.181-188
    • /
    • 2012
  • The present study on nitrogen-diluted non-premixed counterflow flames with finite burner diameters experimentally investigates the important role of the outer edge flame in flame extinction. Flame stability diagrams mapping the flame extinction response of nitrogen-diluted non-premixed counterflow flames to varying global strain rates in terms of the burner diameter, burner gap, and velocity ratio are explored. There exists a critical nitrogen mole fraction beyond which the flame cannot be sustained, and also the curves of the critical nitrogen mole fraction versus the global strain rate have C-shapes in terms of burner diameter, burner gap, and velocity ratio. In flames with sufficiently high strain rates, the curves of the critical nitrogen mole fractions versus global strain rate collapse into one curve, and the flames can have the 1-D flame response of typical diffusion flames. Three flame extinction modes are identified: flame extinctions through the shrinkage of the outer edge flame with and without an oscillation of the outer edge flame prior to the extinction and flame extinction through a flame hole at the flame center. The measured flame surface temperature and a numerical evaluation of the fractional contribution of each term in the energy equation show that the radial conductive heat loss at the flame edge destabilizes the outer edge flame, and the conductive and convection heat addition to the outer edge from the trailing diffusion flame stabilizes the outer edge flame. The radial conductive heat loss at the flame edge is the dominant extinction mechanism acting through the shrinkage of the outer edge flame.

Effect of Sound Field on the Forced Convection Heat Transfer from an Isothermal Cylinder (음장이 등온원통으로부터의 강제대류 열전달에 미치는 영향)

  • 권영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.12 no.2
    • /
    • pp.373-380
    • /
    • 1988
  • The effect of sound on the heat transfer from an isothermal cylinder in cross flow is investigated by numerical analysis. The modeling is made for the laminar incompressible flow fluctuating in the range of the Reynolds number, 5.leq.Re.leq.35, by the sinusoidal acoustic field. The instantaneous response of the flow and heat transfer is simulated for various frequencies. It is shown that the heat transfer amplitude decreases and the phase lags behind the flow velocity with increase in the frequency. The time-mean effects of the acoustic field on the flow field and heat transfer, known as the acoustic and thermoacoustic streaming, are analyzed. The time-mean heat transfer coefficients are decreased around the forward stagnation point but increased in the wake region. Such a local difference in heat transfer coefficients is a function of the frequency and becomes greatest at some frequency. However, with balance between the local increase and decrease, the overall heat transfer coefficient is almost unaffected by sound.

The Study of Finite Element Method for Analyses of Travelling Magnetic Field Problem (운동자계 문제의 해석을 위한 유한요소법에 관한 연구)

  • Chang Ho-Sung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.4
    • /
    • pp.108-116
    • /
    • 2005
  • This paper presents finite element analyses solution in the travelling magnetic field problem. The travelling magnetic field problem is subject to convective-diffusion equation. Therefore, the solution derived from Galerkin-FEM with linear interpolation function may oscillate between the adjacent nodes. A simple model with Dirichlet, Neumann and Periodic boundary condition respectively, have been analyzed to investigate stabilities of solutions. It is concluded that the solution of Galerkin-FEM may oscillate according to boundary condition and element type, but that of Upwind-FFM is stable regardless boundary condition.

Numerical Study for 3D Turbulent Flow in High Incidence Compressor Cascade (고입사각 압축기 익렬내의 3차원 난류유동에 관한 수치적 연구)

  • 안병진;정기호;김귀순;임진식;김유일
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.35-40
    • /
    • 2002
  • A numerical analysis based on two-dimensional and three-dimensional incompressible Navier-Stokes equations has been carried out for double-circular-arc compressor cascades and the results are compared with available experimental data at various incidence angles. The 2-D and 3-D computational codes based on SIMPLE algorithm adopt pressure weighted interpolation method for non-staggered grid and hybrid scheme for the convertive terms. Turbulence modeling is very important for prediction of cascade flows, which are extremely complex with separation and reattachment by adverse pressure gradient. In this paper k-$\varepsilon$ turbulence model with wall function is used to increase efficiency of computation times.

  • PDF

Mechanisms of Convective and Boiling Heat Transfer Enhancement via Ultrasonic Vibration (초음파 진동에 의한 대류 및 비등 열전달 촉진 원리에 관한 연구)

  • Kim, Yi-Gu;Kim, Ho-Young;Kang, Seoung-Min;Kang, Byung-ha;Lee, Jin-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.5
    • /
    • pp.612-619
    • /
    • 2003
  • This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when tile local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism.

Rainfall Characteristics of the Madden-Julian Oscillation from TRMM Precipitation Radar: Convective and Stratiform Rain (TRMM 자료로 분석한 매든-줄리안 진동의 대류성 및 층운형 강수 특징)

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2010
  • The stratiform rain fraction is investigated in the tropical boreal winter Madden-Julian oscillation (MJO) and summer intraseasonal oscillation (ISO) using Tropical Rainfall Measuring Mission (TRMM) Precipitation Rader data for the 11-yr period from 1998 to 2008. Composite analysis shows that the MJO/ISO produces larger stratiform rain rate than convective rain rate for nearly all phases following the propagating MJO/ISO deep clouds, with the greatest stratiform rainfall amount when the MJO/ISO center is located over the central-eastern Indian Ocean and the western Pacific. The fraction of the intraseasonally filtered stratiform rainfall compared to total rainfall (i.e., convective plus stratiform rainfall) amounts to 53~56%, which is 13~16% larger than the stratiform rain fraction estimated for the same data on seasonal-to-annual time scales by Schumacher and Houze. This indicates that the MJO/ISO exhibits the organized rainfall process which is characterized by the shallow convection/heating at the incipient phase and the subsequent flare-up of strong deep convection, followed by the development of stratiform clouds at the upper troposphere.

Comparison of Algorithm & Turbulence Modelling for Calculation of Compressor Cascade Flows (압축기 익렬 유동해석을 위한 알고리즘과 난류 모델의 비교 연구)

  • 김석훈;이기수;최정열;김귀순;임진식;김유일
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.59-69
    • /
    • 2000
  • A numerical analysis based on two-dimensional, incompressible and compressible Navier-Stokes equations was carried out for double circular arc compressor cascade and the results are compared with available experimental data. The incompressible code based on SIMPLE algorithm adopts pressure weighted method and hybrid scheme for the convective terms. The compressible code with preconditioning method involves a upwind-biased scheme for the convective terms and LU-SGS scheme for temporal integration. Several turbulence models are evaluated by computing the turbulent viscous flows; Baldwin-Lomax, standard $\kappa$ -$\varepsilon$, $\kappa$ -$\varepsilon$ Lam. Bremhorst, standard $\kappa$-$\omega$, $\kappa$ -$\omega$ SST model.

  • PDF

Comparison of Design Standards for Seismic Design of Steel Liquid Storage Tanks (강재 액체저장탱크의 내진설계를 위한 설계기준 분석)

  • Bae, Doobyong;Park, Jang Ho;Oh, Chang Kook
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.3
    • /
    • pp.195-202
    • /
    • 2016
  • In this study, it is carried out to analyze the international design standards such as Eurocode 8, API 650, NZSEE and etc for the seismic design of steel liquid storage tanks. From the comparison and analysis, the data for the required parameters and factors are provided for the establishment of Korean seismic design standard for steel liquid storage tanks. The simplified mechanical models have been presented for the seismic design of steel liquid storage tanks in all design standards and the parameters of mechanical models in design standards have similar values. Although the models for the seismic design of steel liquid storage tanks are similar in design standards, design approaches are given differently in accordance with the design methods, allowable stress design or limit state design. Therefore it is not easy to compare seismic forces presented in design standards directly. After comparison of design standards, it is concluded that establishment of Korean design standard for the seismic design of steel liquid storage tanks is necessary.

Development of the LMFBR Accident Analysis Computer Code (고속증식로 사고분석 코드의 개발)

  • Hee Cheon No
    • Nuclear Engineering and Technology
    • /
    • v.16 no.2
    • /
    • pp.47-57
    • /
    • 1984
  • Mathematically-rigorous time-volume averaged conservation equations were simplified to established the differential equations of THERMIT-6S, which is a two-fluid 3-D code. The difference equations of THERMIT-6S were obtained by discretizing the proceeding set of differential equations. The spatial discretization is characterized by a first-order spatial scheme, donor cell method, and staggered mesh layout. For time discretization, a first order semi-implicit scheme treats implictly sonic terms and terms relating to local transport phenomena and explicitly convective terms. The results were linearized by the Newton-Raphson method. In order to construct the reduced pressure equation, the linearized equations were manipulated so that all variables are coupled between mesh cells through only the pressure variable. By simulating numerically the OPERA-15 experiment, it was found that THERMIT-6S is a very powerful code in predicting reactor behavior after sodium boiling including flow coastdown, reversal flow and flow oscillation.

  • PDF