• Title/Summary/Keyword: 진동기반

Search Result 913, Processing Time 0.038 seconds

Design of Geo-fence-based Smart Attendance System (지오펜스 기반 스마트 출결시스템 설계)

  • Hong, Seong-Pyo;Kim, Tae-Yeun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.6
    • /
    • pp.496-502
    • /
    • 2020
  • The electronic attendance management system is being introduced and operated on a pilot basis by some universities and educational institutions. However, most of the related systems have installed and operated the existing barcode and magnetic card systems. Classroom attendance is managed by introducing RF cards, but it causes problems such as recognition distance (less than 5cm) and the need for a check process in which students have to read the card each time with a reader for attendance. Also, it is not possible to respond in real time to the situation of midterm (early leave, absence from the second lecture time, etc.) because it is used in the lecture time of one subject with the record checked once. In order to solve these problems, the various mobile attendance systems proposed to solve these problems are also unable to fundamentally solve problems such as interim attendance and proxy attendance because they check attendance using only the application of a smartphone. In this paper, we use geofencing technology, which is a positioning-based technology that detects the entry and exit of people, objects, etc. in areas separated by virtual boundaries. The proposed system solves the problem of intermediate attendance and alternate attendance by setting the student to automatically record the access record when entering and leaving the classroom set as a geofence with a smartphone. In addition, it also provides a function to prevent unintentional mistakes that occur through the smartphone by limiting some of the functions of the smartphone such as silence, vibration, and Internet use when entering the classroom.

Development of Smart Speed Bump Using Non-newtonian Fluid (비뉴턴 유체를 이용한 스마트 과속방지턱 소재 개발)

  • Jung, Injun;Kim, Eunjung;Yu, Woong-Ryeol;Na, Wonjin
    • Composites Research
    • /
    • v.35 no.4
    • /
    • pp.277-282
    • /
    • 2022
  • In this study, a smart material applicable to speed bumps was developed using low-cost starch and waterbased suspensions, and their properties were investigated. Viscosity and shear stress according to the shear rate was measured by a rheometer to observe shear thickening behavior according to starch concentration. The shear thickening phenomenon and applicability to speed bumps were identified macroscopically via drop weight test and bike driving test, measuring the vibration after impact with a driving speed of 5-25 km/h. As a result of the viscosity measurement, shear thickening occurred after the shear thinning region at the beginning, and the critical strain causing the shear thickening phenomenon decreased as the concentration of starch increased. Also, the viscosity and shear stress increased significantly with the increase of the starch concentration. As a result of the drop weight test and the bike driving test, the suspension was changed to a solid-like state in a short time, and the impact energy was absorbed in the fluid. The shear thickening phenomenon easily occurred as the concentration of the fluid and the applied impact (velocity) increased. Therefore, it can be proposed the development of a smart speed bump material that operates in the range of 5-25 km/h with a Non-Newtonian fluid based on water and starch.

Development of Alkali Stimulant-Based Reinforced Grouting Material from Blast Furnace Slag Powder (고로슬래그 미분말을 이용한 알칼리자극제 기반의 보강그라우트재 개발)

  • Seo, Hyeok;Jeong, Sugeun;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.67-81
    • /
    • 2021
  • Grouting is used for reinforcement and waterproofing of soft ground to increase its bearing capacity, reduce the impacts of rising or lowering groundwater levels, and reduce subsidence due to vibration and general causes. This study investigated the enhancement of grout strength and hardening time by the addition of reinforcing fibers, and the development of non-cement grouting materials from blast furnace slag. An experiment was performed to measure the increase in grout strength resulting from the addition of 0.5% increments of aramid and carbon reinforcing fibers. The results show that the uniaxial compressive strength of grout increases with increasing content of reinforcing fiber. Comparison of three admixtures of finely powdered blast furnace slag and 10%, 20%, and 30% calcium hydroxide stimulating agent showed that the uniaxial compressive strength of the mixture increases with increasing content of alkaline stimulant; however, the strength was lower than for 100% pure cement. The reaction of calcium hydroxide with blast furnace slag powder, which increases the strength of the grout, is more effective if injected as a solution rather than a powder.

The Road condition-based Braking Strength Calculation System for a fully autonomous driving vehicle (완전 자율주행을 위한 도로 상태 기반 제동 강도 계산 시스템)

  • Son, Su-Rak;Jeong, Yi-Na
    • Journal of Internet Computing and Services
    • /
    • v.23 no.2
    • /
    • pp.53-59
    • /
    • 2022
  • After the 3rd level autonomous driving vehicle, the 4th and 5th level of autonomous driving technology is trying to maintain the optimal condition of the passengers as well as the perfect driving of the vehicle. However current autonomous driving technology is too dependent on visual information such as LiDAR and front camera, so it is difficult to fully autonomously drive on roads other than designated roads. Therefore this paper proposes a Braking Strength Calculation System (BSCS), in which a vehicle classifies road conditions using data other than visual information and calculates optimal braking strength according to road conditions and driving conditions. The BSCS consists of RCDM (Road Condition Definition Module), which classifies road conditions based on KNN algorithm, and BSCM (Braking Strength Calculation Module), which calculates optimal braking strength while driving based on current driving conditions and road conditions. As a result of the experiment in this paper, it was possible to find the most suitable number of Ks for the KNN algorithm, and it was proved that the RCDM proposed in this paper is more accurate than the unsupervised K-means algorithm. By using not only visual information but also vibration data applied to the suspension, the BSCS of the paper can make the braking of autonomous vehicles smoother in various environments where visual information is limited.

Validation of the rainfall-runoff ratio of the Namgang Dam flood inflow using physically-based runoff model for upstream residual basin (댐상류 잔유역의 물리기반 유출모형을 이용한 남강댐 유입홍수 유츌률 검증)

  • Lee, Jun;Hong, Sug-Hyeon;Kang, Boosik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.308-308
    • /
    • 2021
  • 다목적댐의 홍수조절운영에 있어서 댐유입량은 직접 관측의 어려움과 오차로 인해 정확한 유량을 산정하는데 한계가 있다. 남강댐 유역의 경우 유역면적대비 과소한 저수용량으로 말미암아 급격한 홍수유입이 발생할 경우 유출률이 비정상적 수치를 보이는 경우가 종종 발생하고 있다. 본 연구에서는 물리기반의 격자형 유출모형을 댐 직상류 잔유역에 적용하여 유출률을 산정 후 남강댐 계측유입량의 타당성을 간접적으로 검증할 수 있는 방법론을 제시하고자 한다. 댐유역에서 잔유역은 직상류 수위표지점 하류의 유역을 일컬으며, 이들 수위표지점에서 홍수시의 배수영향은 최소화될 만큼 이격되어 있고, 댐체 혹은 취수탑에 부착된 수위표와는 달리 기계적 진동의 영향이 최소화되어 있다고 가정한다면, 수위계측지점의 유량을 경계조건으로 활용하여 작은 면적에 대한 정밀한 수문학적 유출모델링을 통하여 비교적 신뢰성있는 유출값을 추정할 수 있다는 장점이 있다. 남강댐 잔유역은 유역 내 산청, 신안, 창촌 수위관측소를 기준으로 상류의 유역을 제외한 부분으로 설정하였다. 본 연구에서는 210m 격자에 대하여 모든 입력자료를 가공하였으며, 입력자료 중 지형자료는 WAMIS에서 제공한 DEM, 토지피복도, 토양도를 활용하였다. 강우자료는 유역 내 위치한 25개 강우관측소의 시단위 강우자료를 활용하였고, 강우사상은 진주 기상관측소의 일우량 100mm 이상을 기준으로 총 8개의 강우사상을 선정하였다. 남강댐 유역의 유출률을 산정하기 위해 산청, 창촌, 신안 등 3개의 수위관측소의 관측유량을 경계조건으로 사용하였고, 모의된 수문곡선의 총유량과 첨두유량을 관측값과 비교하였다. 유출률을 산정하기 위한 기준시간은 강우시작부터 강우종료 후 48시간으로 설정하였다. 유출률은 강우사상별로 편차가 심한 특성을 보이고 있었으며, 전체적으로는 계측유량기준 106~39.1%의 유출률이 보정된 유량을 통해서는 85~33%의 유출률로서 계측유량이 전반적으로 과대추정 되는 경향이 있었음을 확인할 수 있었다. 이들 중 2010년 7월 강우사상은 관측 유입량 기준 95.6%의 유출률을 보여, 추정유량 58.5%대비 상당한 과대추정 경향을 보인 사례로 판단할 수 있었다. 수문학적 유입량 추정방법은 현장계측을 대체할 수 있는 기법으로는 무리가 있으나 현장계측의 신뢰도를 평가하기 위한 목적으로는 유용한 대안이 될 수 있을 것으로 기대된다.

  • PDF

Optimal Design of Overtopping Wave Energy Converter Substructure based on Smoothed Particle Hydrodynamics and Structural Analysis (SPH 및 구조해석에 기반한 월파수류형 파력발전기 하부구조물 최적 설계)

  • Sung-Hwan An;Jong-Hyun Lee;Geun-Gon Kim;Dong-hoon Kang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.992-1001
    • /
    • 2023
  • OWEC (Overtopping Wave Energy Converter) is a wave power generation system using the wave overtopping. The performance and safety of the OWEC are affected by wave characteristics, such as wave height, period. To mitigate this issue, optimal OWEC designs based on wave characteristics must be investigated. In this study, the environmental conditions along the Ulleungdo coast were used. The hydraulic efficiency of the OWEC was calculated using SPH (Smoothed Particle Hydrodynamics) by comparing 4 models that changed the substructure. As a result, it was possible to change the substructure. Through design optimization, a new truss-type structure, which is a substructure capable of carrying the design load, was proposed. Through a case study using member diameter and thickness as design variables, structural safety was secured under allowable stress conditions. Considering wave load, the natural frequency of the proposed structure was compared with the wave period of the relevant sea area. Harmonic response analysis was performed using wave with a 1-year return period as the load. The proposed substructure had a reduced response magnitude at the same exciting force, and achieved weight reduction of more than 32%.

Fast Systemic Evaluation of Amylose and Protein Contents in Collected Rice Landraces Germplasm Using Near-Infrared Reflectance Spectroscopy (NIRS) (근적외선 분광분석기를 이용한 국내외 재래종 벼 유전자원의 아밀로스 및 단백질에 관한 대량 평가 체계구축)

  • Oh, Sejong;Lee, Myung Chul;Choi, Yu Mi;Lee, Sukyeung;Rauf, Muhammad;Chae, Byungsoo;Hyun, Do Yoon
    • Korean Journal of Plant Resources
    • /
    • v.30 no.4
    • /
    • pp.450-465
    • /
    • 2017
  • This study was conducted to characterize the amylose and protein contents of 4,948 rice landrace germplasm using the NIRS model developed in the previous study. The average amylose content of the germplasm was 20.39% and ranged between 3.97 and 37.13%. The amylose contents in the standard rice were 4.99, 18.63 and 20.55% in Sinseonchal, Chucheong and Goami, respectively. The average protein content was 8.17% and ranged from 5.20 to 17.45%. Protein contents in Sinseonchal, Chucheong and Goami were 6.824, 6.869 and 7.839%, respectively. A total of 62% germplasm were distributed between 20.06% and 27.02% in amylose content. Germplasm of 81.60% represented protein content of 6.78-9.75%. The distinguishable ranges of amylose contents according to origin were 16.58-20.06% in Korea, 20.06-23.25% in Japan, 23.25-27.02% in North Korea, and 27.02-37.13% in China. In the protein content, approximately 30% of Chinese resources ranged from 9.75 to 17.45%, whereas less than 10% were detected in other origin accessions. Fifty resources were selected with low and high amylose ranging from 3.97-6.66% and 30.41-37.13%, respectively. Similarly, fifty resources were selected with low and high protein ranging from 5.20-6.09% and 13.21-17.45%, respectively. Landraces with higher protein could be adapted to practical utilization of food sources.

Fabrication of Portable Self-Powered Wireless Data Transmitting and Receiving System for User Environment Monitoring (사용자 환경 모니터링을 위한 소형 자가발전 무선 데이터 송수신 시스템 개발)

  • Jang, Sunmin;Cho, Sumin;Joung, Yoonsu;Kim, Jaehyoung;Kim, Hyeonsu;Jang, Dayeon;Ra, Yoonsang;Lee, Donghan;La, Moonwoo;Choi, Dongwhi
    • Korean Chemical Engineering Research
    • /
    • v.60 no.2
    • /
    • pp.249-254
    • /
    • 2022
  • With the rapid advance of the semiconductor and Information and communication technologies, remote environment monitoring technology, which can detect and analyze surrounding environmental conditions with various types of sensors and wireless communication technologies, is also drawing attention. However, since the conventional remote environmental monitoring systems require external power supplies, it causes time and space limitations on comfortable usage. In this study, we proposed the concept of the self-powered remote environmental monitoring system by supplying the power with the levitation-electromagnetic generator (L-EMG), which is rationally designed to effectively harvest biomechanical energy in consideration of the mechanical characteristics of biomechanical energy. In this regard, the proposed L-EMG is designed to effectively respond to the external vibration with the movable center magnet considering the mechanical characteristics of the biomechanical energy, such as relatively low-frequency and high amplitude of vibration. Hence the L-EMG based on the fragile force equilibrium can generate high-quality electrical energy to supply power. Additionally, the environmental detective sensor and wireless transmission module are composed of the micro control unit (MCU) to minimize the required power for electronic device operation by applying the sleep mode, resulting in the extension of operation time. Finally, in order to maximize user convenience, a mobile phone application was built to enable easy monitoring of the surrounding environment. Thus, the proposed concept not only verifies the possibility of establishing the self-powered remote environmental monitoring system using biomechanical energy but further suggests a design guideline.

Short-term Prediction of Travel Speed in Urban Areas Using an Ensemble Empirical Mode Decomposition (앙상블 경험적 모드 분해법을 이용한 도시부 단기 통행속도 예측)

  • Kim, Eui-Jin;Kim, Dong-Kyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.38 no.4
    • /
    • pp.579-586
    • /
    • 2018
  • Short-term prediction of travel speed has been widely studied using data-driven non-parametric techniques. There is, however, a lack of research on the prediction aimed at urban areas due to their complex dynamics stemming from traffic signals and intersections. The purpose of this study is to develop a hybrid approach combining ensemble empirical mode decomposition (EEMD) and artificial neural network (ANN) for predicting urban travel speed. The EEMD decomposes the time-series data of travel speed into intrinsic mode functions (IMFs) and residue. The decomposed IMFs represent local characteristics of time-scale components and they are predicted using an ANN, respectively. The IMFs can be predicted more accurately than their original travel speed since they mitigate the complexity of the original data such as non-linearity, non-stationarity, and oscillation. The predicted IMFs are summed up to represent the predicted travel speed. To evaluate the proposed method, the travel speed data from the dedicated short range communication (DSRC) in Daegu City are used. Performance evaluations are conducted targeting on the links that are particularly hard to predict. The results show the developed model has the mean absolute error rate of 10.41% in the normal condition and 25.35% in the break down for the 15-min-ahead prediction, respectively, and it outperforms the simple ANN model. The developed model contributes to the provision of the reliable traffic information in urban transportation management systems.

Numerical Model Updating Based on Univariate Search Method for High Speed Railway Bridges (단변분 탐색법에 기초한 고속철도교량의 수치해석 모델 개선)

  • Park, Dong-Uk;Kim, Nam-Sik;Kim, Sung-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.17-27
    • /
    • 2014
  • Numerical model became one of most important tools for identifying the state of an existing structure in accordance with development of numerical analysis techniques. A numerical model should be updated based on the measured responses from the existing structure to accurately use the model for identifying the state of the bridge and executing numerical experiments. In this study, a new model updating method based on repetition method without a differential function is introduced and applicability for high speed railway bridge is verified with dynamic stability analysis. A fine measurement based on measurement points roaming method was executed with an wireless measurement system for precise dynamic characteristic analysis. The natural frequencies and mode shapes were estimated by correlation analysis and a mode decomposition technique. An initial numerical model was constructed based on design drawings and the model have been updated in accordance with the introduced model updating method. The results from numerical experiment and field test have been compared for verifying the applicability of the model updating method. And the dynamic stability analysis has been executed to verify the usability of the updated numerical model and the model updating method. It seems that the model updating method can be used for various bridges after evaluation of applicability for other type bridges in further studies.