• Title/Summary/Keyword: 직접 변환 수신기

Search Result 48, Processing Time 0.021 seconds

Performance Analysis of the UHF RFID Reader with the Range Correlation Effects of the Phase Noise (위상 잡음의 거리 상관 효과에 따른 UHF RFID 리더의 성능 분석)

  • Jang, Byung-Jun;Kang, Min-Soo;Lim, Jae-Bong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.152-160
    • /
    • 2008
  • In this paper, we analyze the performance of a direct-conversion UHF RFID reader with the range correlation effects of the phase noise. Since a UHF RFIB system uses the same oscillator to generate the transmitted carrier and the local oscillation, the periodic interference and phase noise reduction effects occur due to time delay between two signals. Through exact theory and simulation, we verify how to cancel the periodic interference phenomena using I/Q diversity combining technique. And, we analyze phase noise reduction effects due to range correlation as a function of the tag-reader distance and the offset frequency Using these results, we simulate the symbol-error-rate performance with respect to phase noise with and without range correation effects. We show that the phase noise of the local oscillator has little effect on the symbol-error-rate performance because of phase noise reduction by range correlation.

An 2.4 GHz Bio-Radar System for Non-Contact Measurement of Heart and Respiration (호흡 및 심박수 측정을 위한 비 접촉 방식의 2.4 GHz 바이오 레이더 시스템)

  • Lee, Yong-Jin;Jang, Byung-Jun;Yook, Jong-Gwan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.2
    • /
    • pp.191-199
    • /
    • 2008
  • In this paper, we present a performance analysis and design and implementation results of a 2.4 GHz bio-radar system that can detect human heartbeat and respiration signals. In order to design a 2.4 GHz bio-radar system qualitatively, we investigate the electromagnetic properties of human tissues and calculate the target SNR of demodulation output with respect to distance. The target SNR is defined by the 90 % success ratio for detecting heartbeat signal. With this target SNR value, the performance and link budget of the bio-radar system is simulated using MATLAB. Using this link budget results, the direct conversion receiver is designed and Implemented in 4 layer printed circuit board(PCB). With output power of 0 dBm and 5 Hz bandwidth, 80 % success ratio of 50 cm is measured. Measurement results show a good agreement with simulation results.

Design of Multiband Octa-Phase LC VCO for SDR (SDR을 위한 다중밴드 Octa-Phase LC 전압제어 발진기 설계)

  • Lee, Sang-Ho;Han, Byung-Ki;Lee, Jae-Hyuk;Kim, Hyeong-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.7-11
    • /
    • 2007
  • This paper presents a multiband octa-phase LC VCO for SDR receiver. Four identical LC VCOs are connected by using series coupling transistor to obtain the octa-phase signal and low phase noise characteristic. For a multiband application, a band tuning circuit that consists of a switch capacitor circuit and two MOS varactors is proposed. As the MOS switch is on/off state, the frequency range will be varied. In addition, two varactors make the VCO be immune to process variation of the oscillation frequency. The VCO is designed in 0.18-um CMOS technology, consumes 12mA current from 1.8V supply voltage and operates with a frequency band from 885MHz to 1.342GHz (41% tuning range). As driving sub-harmonic mixer, the proposed VCO covers 3 standards(CDMA 2000 1x, WCDMA, WiBro). The measured phase noise is -105dBc@100kHz, -115dBc@1MHz, -130dBc@10MHz for CDMA 2000 1x, WCDMA, WiBro respectively.

Joint Estimation and Compensation for Frequency Selective IQ Imbalance in OFDM Systems (OFDM 시스템에서의 주파수 선택적 IQ 불균형의 추정 및 보상)

  • Jin, Young-Hwan;Kim, Hye-Jin;Kim, Jik-Dong;Ahn, Jae-Min
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3A
    • /
    • pp.225-234
    • /
    • 2008
  • Orthogonal Frequency Division Multiplexing (OFDM) systems utilizing direct conversion receiver suffer from frequency selective (FS) and frequency independent (FI) phase and gain imbalances caused by imperfect local oscillator and low pass filter. In this paper, we analyze the impacts of the transmit/receive IQ imbalances on the system and propose the estimation and compensation schemes for those imbalances. The preamble signals coded by Alamouti scheme in the frequency domain could be used in the estimation of relatively large IQ imbalances with FS and FI characteristics and the estimation results are used for the compensation of distortions caused by the FI and FS IQ imbalances. The optimal maximum likelihood (ML) receiver or suboptimal ordered successive interference cancallation (OSIC) receiver utilizing the estimation results show symbol error rate (SER) performance improvement compared to zero-forcing (ZF) technique due to diversity gain inherent in the frequency domain IQ imbalances combined with the frequency selective channels.

Design and Performance Evaluation of In-Band Full-Duplex System Based on Direct Conversion Receiver (직접변환 수신기 구조에서 In-Band Full-Duplex 시스템 설계와 성능 특성 평가)

  • Keum, Hong-Sik;An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.12
    • /
    • pp.1258-1268
    • /
    • 2014
  • In this paper, we propose and design IBFD system based on DCR. And then, we analyze effect of DC offset by self-interference in the proposed system. Also, we evaluate BER performance of the proposed system according to DC offset. As a result of the simulation, we can confirm that when the self-interference is not completely cancelled by the RF cancellation, linearity of desired signal and self-interference is distorted by DC offset. Also, in the proposed system using m-QAM modulation, DC offsets of multi-level are caused by self-interference with m-QAM modulation. As a result, constellations of desired signal and self-interference are greatly distorted. In contrast, in the proposed system using m-PSK modulation, DC offset of single level is caused by self-interference with m-PSK modulation. In this condition, we confirm that distortion of constellations of desired signal and self-interference is less than when using m-QAM modulation. That is, we can confirm that m-PSK modulation is effective than m-QAM modulation in DCR based IBFD system. Also, we can confirm that it is important to cancel self-interference as much as possible in RF-stage.

A Study on Adaptive Pilot Beacon for Hard Handoff at CDMA Communication Network (CDMA 통신망의 하드핸드오프 지원을 위한 적응형 파일럿 비콘에 관한 연구)

  • Jeong Ki Hyeok;Hong Dong Ho;Hong Wan Pyo;Ra Keuk Hwawn
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.10A
    • /
    • pp.922-929
    • /
    • 2005
  • This paper proposes an adaptive pilot beacon equipment for mobile communication systems based on direct spread spectrum technology which generates the pilot channel for handoff between base stations by using the information acquired from the downstream wireless signal regarding the overhead channel information. Such an adaptive pilot beacon equipment will enable low power operation since among the wireless signals, only the pilot channel will be generated and transmitted. The pilot channel in the downstream link of the CDMA receiver is used to acquire time and frequency synchronization and this is used to calibrate the offset for the beacon, which implies that time synchronization using GPS is not required and any location where forward receive signal can be received can be used as the installation site. The downstream link pilot signal searching within the CDMA receiver is performed by FPGA and DSP. The FPGA is used to perform the initial synchronization for the pilot searcher and DSP is used to perform the offset correction between beacon clock and base station clock. The CDMA transmitter the adaptive pilot beacon equipment will use the timing offset information in the pilot channel acquired from the CDMA receiver and generate the downstream link pilot signal synchronized to the base station. The intermediate frequency signal is passed through the FIR filter and subsequently upconverted and amplified before being radiated through the antenna.

Performance and Jitter Effects Analysis of Single Bit Electro-Optical Sigma-Delta Modulators (단일 비트 전자-광학 시그마-델타 변조기의 성능 및 지터 효과 분석)

  • Nam, Chang-Ho;Ra, Sung-Woong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.6
    • /
    • pp.706-715
    • /
    • 2012
  • Electro-optical sigma-delta modulators are the core module of digital receiver to digitize wideband radio-frequency signals directly at an antenna. Electro-optical sigma-delta modulators use a pulsed laser to oversample an input radio-frequency signals at two Mach-Zehnder Interferometer(MZI) and shape the quantization noise using a fiber-lattice accumulator. Decimation filtering is applied to the quantizer output to construct the input signal with high resolution. The jitter affects greatly on reconstructing the original input signal of modulator. This paper analyzes the performance of first order single bit electro-optical sigma-delta modulator in the time domain and the frequency domain. The performance of modulator is analyzed by using asynchronous spectral averaging of the reconstructed signal's spectrum in the frequency domain. The reference value of time jitter is presented by analyzing the performance of jitter effects. This kind of jitter value can be used as a reference value on the design of modulators.

A Study on the Detection of Small Cavity Located in the Hard Rock by Crosswell Seismic Survey (경암 내 소규모 공동 탐지를 위한 시추공간 탄성파탐사 기법의 적용성 연구)

  • Ko, Kwang-Beom;Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.2
    • /
    • pp.57-63
    • /
    • 2003
  • For the dectection of small cavity in the hard rock, we investigated the feasibility of crosswell travel-time tomography and Kirchhoff migration technique. In travel-time tomography, first arrival anomaly caused by small cavity was investigated by numerical modeling based on the knowledge of actual field information. First arrival delay was very small (<0.125 msec) and detectable receiver offset range was limited to 4m with respect to $1\%$ normalized first arrival anomaly. As a consequence, it was turned out that carefully designed survey array with both sufficient narrow spatial spacing and temporal (<0.03125 msec) sampling were required for small cavity detection. Also, crosswell Kirchhoff migration technique was investigated with both numerical and real data. Stack section obtained by numerical data shows the good cavity image. In crosswell seismic data, various unwanted seismic events such as direct wave and various mode converted waves were alto recorded. To remove these noises und to enhance the diffraction signal, combination of median and bandpass filtering was applied and prestack and stacked migration images were created. From this, we viewed the crosswell migration technique as one of the adoptable method for small cavity detection.