• Title/Summary/Keyword: 직접분사식 엔진

Search Result 123, Processing Time 0.022 seconds

A Study on Expansion of Lean Limit for Heavy-Duty DI Engine with Compressed Natural Gas (대형 직접분사식 CNG기관의 희박한계 확장에 관한 연구)

  • Quoc, Tran Dang;Lee, Kwang-Ju;Lee, Jong-Tai
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.22 no.5
    • /
    • pp.735-740
    • /
    • 2011
  • 본 연구에서는 직접분사식 CNG기관의 희박한계를 보다 확장하여 고효율 및 저배기 공해를 실현시키고자 실린더 내에 고압의 천연가스를 직접분사함과 동시에 흡입과정 중 흡기관 내에 소량의 저압천연가스를 보조분사하는 경우의 희박한계 확장 및 제반특성에 대해 검토하였다. 그 결과, 흡기보조분사가 없을 경우 희박한계가 ${\lambda}$ = 1.4 까지였으나, 흡기보조분사율이 5~15% 정도에서는 희박한계가 ${\lambda}$ = 1.5 까지 확장되었다. 이는 흡기보조분사에 따른 혼합기의 혼합율 향상에 기인한 것으로 해석하였다. 연소기간은 줄어들었지만, 흡기보조분사의 효과는 주연소기간에서 조기연소기간보다 강하게 나타났다.

Effects of Intake and Exhaust Valve Timing on Combustion and Emission Characteristics of Lean-Burn Direct-Injection LPG Engine (직접분사식 희박연소 LPG엔진에서 흡배기 밸브시기가 연소 및 배기특성에 미치는 영향)

  • Park, Cheolwoong;Kim, Taeyoung;Cho, Seehyoen;Oh, Seungmook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.45-51
    • /
    • 2015
  • In order to meet the enforced emission regulations and reduce fuel consumption, various new technologies are employed in engines. The problem of NOx emissions under a lean mixture condition should be solved, because a lean-burn direct-injection engine can realize stable lean combustion with a stratified mixture, which results in improvements in fuel economy and emissions. This study investigated the effects of intake and exhaust valve timing changes on the performance and emission characteristics of a lean-burn LPG direct-injection engine. Under a partial-load operating condition without throttling, an increase in the intake valve opening led to an increase in NOx emissions due to an increase in the amount of excess air. The fuel consumption deteriorated with an increase in the exhaust valve opening due to a decrease in the expansion work and an increase in the pumping loss.

Study on Emission Reduction with Injection Strategy and Exhaust-Gas Recirculation in Gasoline Direct Injection Engine (직접분사식 가솔린 엔진의 분사전략 변경 및 EGR 적용을 통한 배기저감에 관한 연구)

  • Park, Cheol-Woong;Kim, Hong-Suk;Woo, Se-Jong;Kim, Yong-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.3
    • /
    • pp.335-342
    • /
    • 2012
  • Nowadays, automobile manufacturers are focusing on the reduction of exhaust-gas emissions because of the harmful effects on humans and the environment, such as global warming by greenhouse gases. Gasoline direct injection (GDI) combustion is a promising technology that can improve fuel economy significantly compared to conventional port fuel injection (PFI) gasoline engines. In the present study, ultra-lean combustion with an excess air ratio of over 2.0 is realized with a spray-guided-type GDI combustion system, so that the fuel consumption is improved by about 13%. The level of exhaust-gas emissions and the operation performance with the multiple injection strategy and exhaust-gas recirculation (EGR) are examined in comparison with the emission regulations and from the point of view of commercialization.

Study of Combustion Characteristics with Variations of Combustion Parameter in Ultra-Lean LPG Direct Injection Engine (연소제어인자의 변화에 따른 직접분사식 초희박 LPG엔진의 연소특성 연구)

  • Park, Yun Seo;Park, Cheol Woong;Oh, Seung Mook;Kim, Tae Young;Choi, Young;Lee, Yong Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.607-614
    • /
    • 2013
  • Nowadays, automotive manufacturers have developed various technologies to improve fuel economy and reduce harmful emissions. The ultra-lean direct injection engine is a promising technology because it has the advantage of improving thermal efficiency through the deliberate control of fuel and ignition. This study aims to investigate the development of a spray-guided-type lean-burn LPG direct injection engine through the redesign of the combustion system. This engine uses a central-injection-type cylinder head in which the injector is installed adjacent to the spark plug. Fuel consumption and combustion stability were estimated depending on the ignition timing and injection timing at various air-fuel ratios. The optimal injection timing and ignition timing were based on the best fuel consumption and combustion stability.

The Effects of Split-Injection and EGR on the Combustion Characteristics of a DISI Engine (직접분사식 가솔린 엔진에서 분할분사 및 배기가스 재순환의 효과)

  • Moon Seoksu;Choi Jaejoon;Abo-Serie Essam;Bae Choongsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.1
    • /
    • pp.144-152
    • /
    • 2006
  • Split injection has been known to reduce total hydrocarbon (THC) emission level and increase engine performance under certain operating conditions 1, 2). Exhaust Gas Recirculation (EGR) is a common technique adopted for nirtric oxides (NOx) reduction by the dilution of intake air, despite a sacrifice of simultaneous increase in THC and decrease in engine performance3). Thus, using split injection with adequate EGR may improve the emission level of UBHC, NOx and the engine performance compared to that of single-injection with or without EGR cases. The purpose of this study is to investigate the engine performance and emission levels at various engine operating conditions and injection methods when it is applied with EGR. The characteristics of single-injection and split-injection were investigated with various engine loads and EGR rates. The engine speed is changed from 800rpm to 1200rpm to investigate how the combustion characteristics are changing with increasing engine speed.

Effect of Injection Pressure and Injection Timing on Combustion Characteristics of Spray-Guided Direct-Injection Spark-Ignition Engine under Lean Stratified Combustion Operation (성층희박연소 운전조건에서 분사압과 분사시기에 따른 분무유도식 직접분사 가솔린엔진의 연소특성)

  • Oh, Hee-Chang;Lee, Min-Seok;Park, Jung-Seo;Bae, Choong-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.10
    • /
    • pp.981-987
    • /
    • 2011
  • In this study, single cylinder engine experiment was carried out to investigate combustion characteristics spray guided direct injection spark ignition engine. In the result of engine experiment, it was shown that flammable window of injection timing was existed. The combustion efficiency increased with retarding injection timing, reaching a peak value, subsequent to decrease again. These results were likely due to the effect of ambient pressure on stratified-premixed mixture preparation. 150 bar injection pressure condition and retarded injection timing from the best combustion efficiency injection timing showed the highest IMEP value due to the advanced combustion phase of the maximum combustion efficiency condition. HC emission showed same trend of combustion efficiency, and smoke emission was increased as injection timing was retarded due to the increased locally rich area in the high ambient pressure. NOx emission showed decreasing trend as injection timing was retarded. This is likely due to the maximum in-cylinder temperature was decreased with retarded combustion phase.

A Study on the Characteristics of Combustion according to Injection Strategy in DISI Engine (직접분사식 가솔린엔진의 분사 비율에 따른 연소특성에 관한 연구)

  • In, Byung-Deok;Park, Sang-Ki;Lee, Ki-Hyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.1
    • /
    • pp.68-76
    • /
    • 2012
  • Recently, the important issues of gasoline engine are to reduce the fuel consumption and emission. Thus, many researchers are studying the technology to solve these problems. One approach of these issues is to achieve homogeneous charge combustion and stratified change combustion with various injection strategy. In this study, the combustion characteristics of DISI engine accrding to injection strategy were examined. The effect of injection timing on lean limit A/F were investigated using dual DISI single cylinder. The results show that the engine operation region of dual DISI type engine is larger than that of PFI and DISI type engine cases. Especially, late injection is very effective to extend the operation region more than any other injection timings. In addition, the results show that when the DISI injection ratio is increase, leam limit A/F is improved. It means that the dual injection system car meet with emission regulations and reduce the fuel consumption. Also, combustion pressure of dual injection system is much higher than PFI and DISI injection.