• Title/Summary/Keyword: 직류전동기 제어기

Search Result 175, Processing Time 0.028 seconds

Robust speed control of DC motor using Expert Sliding mode controller (전문가 슬라이딩 모드 제어기를 이용한 직류전동기의 강인한 속도제어)

  • 지봉철;박왈서
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.1
    • /
    • pp.89-93
    • /
    • 2000
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. Generally, it is known that sliding mode controller has robustness. But, after it is assumed that we known the disturbance uncertainty, sliding mode controller is designed. Thereafter, if we are not known th disturbance uncertainty then controller design is difficult. As a method solving this problem, in this paper, Expert sliding mode control method for motor control system is presented.The proposed controller can eliminate load disturbance effectively. The effectiveness of the control scheme is verified by simulation results.

  • PDF

直流電動機運轉

  • 한경희
    • 전기의세계
    • /
    • v.34 no.3
    • /
    • pp.145-152
    • /
    • 1985
  • 다이리스테레오나드방식과 쵸퍼방식에 의한 직류전동기의 운전에 대하여 개략적으로 검토하였다. 고정도 가변속도제어를 요하는 산업부문에서는 다이리스터레오나드제어방식이 많이 사용되며, 전시, 전기자동차와 같은 수송기관에는 쵸퍼방식이 주로 사용되고 있다. 그러나 직류기는 구조상 정류자 및 브러쉬를 갖고있으므로 보수문제, 용량 및 속도의 제한, 편용환경의 제약 및 고가인 난점이 있는 관계상, 직류기 대신에 교류기를 모든 분야에서 편용하기 위한 연구가 근년 활발히 전개되어, 현재 산업분야는 물론 전철과 같은 수송기관에 까지 인버어터제어에 의한 교류기운전의 사용례가 발표되어 있다. 현단계에서는 경제성 및 제어성의 관점에서 교류시시스템이 직류기시스템보다 우수하다고는 할 수 없지만, 직류기시스템이 금후에도 계속하여 발전하기 위해서는 경제성을 제1위주로 부단한 연구가 필요한 시기라 생각된다.

  • PDF

Circuit design and modeling for DC motor speed control (직류 전동기 속도제어를 위한 회로 설계 및 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.2
    • /
    • pp.131-136
    • /
    • 2021
  • A DC motor is an important driving source used in a wide range along with an induction motor. Although the structure is complex and has disadvantages in terms of maintenance, most of the demands are given to induction motors as a power source in the industry today, but due to its excellent control performance, DC motors are constantly being used as small-sized control motors. In addition, DC motors with a structure capable of high-power and high-efficiency operation are being developed with the development of magnetic materials as a structure capable of using a permanent magnet in a armature. In addition, the configuration of the controller is simpler than that of an induction motor using an inverter, and the demand for a DC motor is still not negligible, so it is still occupied as an important power source. Considering these trends, this paper attempts to investigate the control performance of DC motors through hardware implementation such as modeling through simulation, PWM generation circuit and electric motor circuit using EPLD, and PI control using processor.

Robust Digital Position Control of Brushless DC Motor (외란에 둔감한 브러쉬없는 직류전동기(BLDC Motor)의 디지털 위치제어)

  • 고종선;조관열;윤명중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.1
    • /
    • pp.36-48
    • /
    • 1990
  • A new control method for robust position control of brushless dc motor is presented. The model of brushless dc motor is approximately linearized by field-orentation method, and it is shown that augmented state variable feedback can be applied to this system. In addition, robustness is obtained without any change of overall system response. Load disturbance is detected by 0-observer of unknown and inaccessible input, and is compensated by feedforward which has fast response. Overall system is controlled by using the MC68000 microprocessor, and the performance of the proposed control algorithm is verified by the results of simulation and experiment.

Sensorless Control of High-Speed BLDC (고속 BLDC 전동기의 센서리스 제어)

  • Cho, Heung-Hyeon;Kim, Won-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.503-512
    • /
    • 2020
  • The products using blowers include hand dryers, automatic car washers, dryers, and vacuum cleaners. The features of these products require a structure and control algorithm so that a strong wind is blown out at the moment. Electric motors according to the existing excitation method include a direct winding type, a decentralized type, a lottery type, and a permanent magnet type. Conventional electric motors have a disadvantage when the starting current is large during high-speed rotation and the number of rotations is irregular. In order to improve this, research on high-speed BLDC motor control has designed 800W-class high-speed BLDC motor control and circuit through driving circuit design, sensorless control algorithm, simulation, experiment, etc., and more than 95% high efficiency evaluation method of driving performance of controller, prototype experiments and verification were studied.

A Study on the DC Motor Control System using Nonlinear Controller with Dual-Input Describing Function (쌍입력 기술함수를 갖는 비선형 제어기를 이용한 직류전동기 제어시스템에 관한 연구)

  • 김익수;안영주;최연욱;이형기
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.205-208
    • /
    • 2000
  • In this paper, we'll show that an improved PDFF controller is obtained by substituting a feedforward compensator in the existing PDFF system with a dual-input describing function, and the controller has the ability of adjusting the bandwidth of a system as well as the phase margin simultaneously. The effectiveness of the proposed controller is confirmed by applying to the DC-motor position control system. As the results of simulation, we know that it is possible to design a controller by which the bandwidth of the closed system and its phase margin are easily adjusted.

  • PDF

Speed Control of a Sinusoidal Type Brushless DC Motor using an Auto-tuning Method (자동동조 기법을 이용한 정현파형 BLDC 전동기의 속도제어)

  • 전인효;노민식;최중경;박승엽
    • Journal of the Korean Institute of Telematics and Electronics T
    • /
    • v.36T no.1
    • /
    • pp.41-50
    • /
    • 1999
  • The brushless DC motor is widely being used in unmanned factories for its easy maintenance and characteristics of controllability. In this paper, we designed a speed control servo system of a sinusoidal type bmshless DC motor which has high efficiency and usefulness in the industrial fields. This servo system is realized by a controller which is required for driving motors and a new auto-tuning PI control algorithm. The DSP(Digita1 Signal Processor) is adopted as a main controller and a sensor signal processor owing to its fast computational capability and suitable architecture. Also, the hardware PWnl(Pulse Width Modulation) current controller is implemented to pursue a speed command exactly. By experimental results, it is verified that the speed response is pursued fast after command value and the steady-state response is well converged for command value variation without overshoots.

  • PDF

Robust speed control of DC motor using PID-Expert Hybrid controller (PID-전문가 복합형 제어기를 이용한 직류전동기의 강인한 속도제어)

  • Cho, Hyeon-seob;Oh, Hun;Kim, Hee-Suk;Park, Min-Gyu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.14 no.5
    • /
    • pp.56-61
    • /
    • 2000
  • Robust control for DC motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control systems.In this paper, PID-Expert hybrid control method for motor control system as a compensation method solving this problem is presented. If PID control system is stable, the Expert controller is idle. if the error hits the boundary of the constraint, the Expert controller begins operation to force the error back to the constraint set. The disturbance effect decrease remarkably, robust speed control of DC motor using PID-Expert Hybrid controller is demonstrated by the simulation.

  • PDF

A Study on the Speed Control of Induction Motor using a PID Controller and Neural Network Controller (PID제어기와 신경회로망 제어기를 이용한 유도전동기의 속도제어에 관한 연구)

  • Cho, Hyun-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.8
    • /
    • pp.1993-1997
    • /
    • 2009
  • Robust control for DC servo motor is needed according to the highest precision of industrial automation. However, when a motor control system with PID controller has an effect of load disturbance, it is very difficult to guarantee the robustness of control system. As a compensation method solving this problem, in this paper, PID-neural network hybrid control method for motor control system is presented. The output of neural network controller is determined by error and rate of error change occurring in load disturbance. The robust control of DC servo motor using neural network controller is demonstrated by computer simulation.

A sensorless speed control of brushless DC motor by using direct torque control (직접토크제어에 의한 브러시리스 직류전동기의 센서리스 속도제어)

  • Yoon, Kyoung-Kuk;Oh, Sae-Gin;Kim, Deok-Ki
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.935-939
    • /
    • 2015
  • This paper describes sensorless speed control of brushless DC motors by using direct torque control. Direct torque control offers fast torque response, robust specification of parameter changes, and lower hardware and processing costs compared to vector-controlled drives. In this paper, the current error compensation method is applied to the sensorless speed control of a brushless DC motor. Through this control technique, the controlled stator voltage is applied to the brushless DC motor such that the error between the stator currents in the mathematical model and the actual motor can be forced to decay to zero as time proceeds, and therefore, the motor speed approaches the setting value. This paper discusses the composition of the controller, which can carry out robust speed control without any proportional-integral (PI) controllers. The simulation results show that the control system has good dynamic speed and load responses at wide ranges of speed.