• Title/Summary/Keyword: 지형 경사

Search Result 1,012, Processing Time 0.025 seconds

A Modified Propagation Model of Tsunamis over Slowly Varying Slope (완만한 경사를 지나는 지진해일 전파모의 수정 기법)

  • Kim, Ji-Hun;Ha, Tae-Min;Cho, Yong-Sik
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.40-41
    • /
    • 2011
  • 동해를 전파하는 지진해일은 세계적으로 다른 지역에서 발생하는 지진해일과 비교하였을 때 상대적으로 파장이 짧고, 이에 비해 먼 거리를 전파한다. 그러므로 동해에서 발생한 지진해일의 전파에 대한 해석을 수행할 때 물리적인 분산효과가 매우 중요하다. 따라서 지배방정식으로 분산 효과가 충분히 고려된 선형 Boussinesq 방정식을 사용한다. 기존의 연구에서는 leap-frog 기법을 사용하여 선형 천수방정식을 차분할 때 발생하는 수치분산항에 분산 보정계수를 이용하여 선형 Boussinesq 방정식의 물리적 분산항과 같은 형태로 나타나도록 유도하여 수치모의를 수행하였다. 그러나 기존에 사용한 지배방정식은 수심이 일정하다는 가정을 통하여 유도된 것으로, 수심에 변화가 있는 실제 지형을 통과하는 지진해일에 대한 수치모의를 수행한 결과의 정확도에 문제가 생길 수 있다. 본 연구에서는 기존의 연구에서 발생할 수 있는 수심 변화에 따른 오류를 개선하기 위하여 바닥 지형이 1차원으로 변한다는 가정을 이용하여 지배방정식을 유도하였으며, 이로 인해 발생하는 수심 변화가 고려된 항을 기존의 분산보정기법에 추가하였다. 그리고 적용성을 높이기 위하여 수치모의 기법의 제한을 최소화하는 연구를 진행하였다. 본 연구에서 제안한 수정 기법이 수심이 변화하는 지형을 전파하는 지진해일 수치모의 과정에서 경사에 대한 분산효과가 충분히 고려되는지 확인하기 위하여 Gaussian hump를 이용한 가상 지진해일을 원형 천퇴 지형에 통과시켰다. 본 연구에서 사용한 지형을 통과하는 Gaussian hump에 대한 해석해를 구하는 방법이 존재하지 않으므로, Boussinesq 방정식을 직접 차분하여 푸는 FUNWAVE를 사용하여 동일한 조건 하에서 수치모의를 수행하였다. 비교 결과를 통하여 본 연구에서 제안한 기법의 정확도 향상을 확인하게 되면, 실제 지형을 통과하는 지진해일의 수치모의에 대한 활용성을 높일 수 있을 것이다.

  • PDF

Analysis of Terrain by LIDAR Data (LiDAR 자료에 의한 지형해석)

  • Kang, Joon-Mook;Yoon, Hee-Cheon;Min, Kwan-Sik;We, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.5
    • /
    • pp.389-397
    • /
    • 2006
  • The purpose of the present paper is to offer an analysis of LiDAR data processing and three dimensional terrain for Geographic Information System (CIS) applications. Generally, LiDAR survey is the method which obtains quantitative and qualitative information of the terrain using airborne laser scanning (ALS). We will get a most topographic data at a Triangular Irregular Network (TIN), Digital Surface Model (DSM) and Digital Elevation Model (DEM) using LiDAR data. We examined many factors such as visibility, hillshade, aspect and slope using DEM and DSM. The analyzing results obtained from each item are thought to be regarded as leading factors in the terrain analysis. It is to be hoped that LiDAR survey will contribute a new approach to the terrain analysis.

LiDAR Ground Classification Enhancement Based on Weighted Gradient Kernel (가중 경사 커널 기반 LiDAR 미추출 지형 분류 개선)

  • Lee, Ho-Young;An, Seung-Man;Kim, Sung-Su;Sung, Hyo-Hyun;Kim, Chang-Hun
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • The purpose of LiDAR ground classification is to archive both goals which are acquiring confident ground points with high precision and describing ground shape in detail. In spite of many studies about developing optimized algorithms to kick out this, it is very difficult to classify ground points and describing ground shape by airborne LiDAR data. Especially it is more difficult in a dense forested area like Korea. Principle misclassification was mainly caused by complex forest canopy hierarchy in Korea and relatively coarse LiDAR points density for ground classification. Unfortunately, a lot of LiDAR surveying performed in summer in South Korea. And by that reason, schematic LiDAR points distribution is very different from those of Europe. So, this study propose enhanced ground classification method considering Korean land cover characteristics. Firstly, this study designate highly confident candidated LiDAR points as a first ground points which is acquired by using big roller classification algorithm. Secondly, this study applied weighted gradient kernel(WGK) algorithm to find and include highly expected ground points from the remained candidate points. This study methods is very useful for reconstruct deformed terrain due to misclassification results by detecting and include important terrain model key points for describing ground shape at site. Especially in the case of deformed bank side of river area, this study showed highly enhanced classification and reconstruction results by using WGK algorithm.

The Distribution Characteristics of Topographical Relieves at Each Geological Area in Gyeongsangbuk-do Province using GIS (GIS를 이용한 경상북도 지질 지역별 지형 기복의 분포 특성)

  • KIM, Dae-Sik;LEE, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.17 no.3
    • /
    • pp.49-57
    • /
    • 2010
  • The topographical rolling distribution characteristics of 10 geological areas in Gyeongsangbuk-do are analyzed using GIS. PEs, PEgrgn, Pp2, Kav·Kiv, and Khgr regions occupy the more than 60% that are a steep slope-a high elevation and a steep slope-a middle elevation region, and form high moutains in Gyeongsangbuk-do. Meanwhile, Ke1-9 and Te1-2 regions take possession of the more than 70% that are a low elevation region. Ke1-9 region form landward flatlands and hills around Nakdong river and tributaries of Nakdong river in Gyeongsangbuk-do. Then, Te1-2 region form coastal lowlands adjacent the East sea in Gyeongsangbuk-do. Also, Jgr region take possession of the more than 70% that are a middle elevation region, and form low moutains or flatlands in Gyeongsangbuk-do. Finally, Ols1 region take possession of the more than 50% that are a steep slope region, and form landward moutains in Gyeongsangbuk-do.

Optimal Search Depth for the Sonar Systems in a Range-Dependent Ocean Environment (거리종속 환경에서 소나의 최적운용수심에 대한 연구)

  • Lee, Jae-Hoon;Kim, Jea-Soo;Yoo, Jin-Soo;Byun, Yang-Hun;Cho, Jung-Hong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.47-56
    • /
    • 2008
  • In the detection of an underwater target, there exists an optimal search depth for the sonar systems, at which the Probability of Detection is maximized. The optimal search depth is dependent on the depths of the target and sonar, the sound speed profile, and the bathymetry. In this paper, we address this question in range-dependent environments, particularly for the bathymetry with slope and with warm eddy. For range-dependent bathymetry, the typical sound profile in the East Sea of Korea was used. The detection range was greater when the sonar was located in deep water than in shallow water. As for the case of eddy, mesoscale warm eddy was used, and the detection range was greater when looking out of the warm eddy than when looking into the eddy.

Effect of Direct Solar Radiation with Sloped Topography in a Mesoscale Meteorological Model (중규모 기상모형에서 지표면 경사를 고려한 직달 복사량의 효과)

  • Shin, Sun-Hee;Lee, Young-Sun;Ha, Kyung-Ja
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.45-59
    • /
    • 2006
  • In this study, the effects of the surface topographical characteristics on the meteorological fields are examined in a mesoscale meteorlolgical model. We calculated the direct solar radiation using the illumination angle considering the inclination of topography and tried to find out its effect on meteorological fields. In above experiments, we selected two cases for the clear day and the cloudy day to show the effect of weather and represented the results for two cases. In the correction of the direct solar radiation, the results of two cases indicate that there are obvious differences on the steep Taeback and Soback mountains. And on the time-series analysis the east-facing slope of these mountains receives the more direct solar radiation about $10-60W/m^2$ in the morning hours but lesser in the afternoon hours than the horizontal surface while it is opposite on the west-facing slope. And the results mentioned above are more obvious at clear day. With the same analysis method, at clear day, the surface skin temperature is higher at all hours than that on horizontal surface on the both of slope. At cloudy and rainy day, the surface skin temperature on the east-facing slope is higher in the morning hours but lower in the afternoon hours than that on horizontal surface. But on the west-facing slope, it is higher at all hours than that on horizontal surface. In the two cases, the temperature considering the slope of surface is almost higher than that on the horizontal surface. The wind is stronger than that on the horizontal surface with increasing pressure gradient force according as increasing temperature gradient around the Taeback and the Soback mountains.

  • PDF

Extension of Weakly Nonlinear Wave Equations for Rapidly Varying Topography (급변수심에의 적용을 위한 약 비선형 파동방정식의 확장)

  • 윤성범;최준우;이종인
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.13 no.2
    • /
    • pp.149-157
    • /
    • 2001
  • From the weakly nonlinear mild-slope wave equations introduced by Nadaoka et al.(1994, 1997), a set of weakly nonlinear wave equations for rapidly varying topography are derived by including the bottom curvature and slope-squared tenns ignored in the original equations ofNadaoka et al. To solve the linear version of extended wave equations derived in this study one-dimensional finite difference numerical model is con¬structed. The perfonnance of the model is tested for the case of wave reflection from a plane slope with various inclination. The numerical results are compared with the results calculated using other numerical models reported earlier. The comparison shows that the accuracy of the numerical model is improved significantly in comparison with that of the original equations ofNadaoka et al. by including a complete set of bottom curva1w'e and slope¬squared terms for a rapidly varying topography.

  • PDF

Morphological Representation of Channel Network by Dint of DEM (DEM을 이용한 수로망의 형태학적 표현)

  • Kim, Joo-Cheol;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.4
    • /
    • pp.287-297
    • /
    • 2007
  • The procedures for identifying channel network are suggested by exploring the scaling property between the local slope and the contributing area, given that the area threshold criterion is an indispensable complement to the slope-area threshold criterion. Through the use of the above procedures and the field data, the basin slopes illustrate the trends of large scatters in space for the geomorphologic/topographic factors. According to the scaling regimes of them both the forms of landscape can be classified as topographic divergence and convergence. The presentation of the procedures proposed in this study is implemented in the case study on Seolma experimental catchment in Korea. As a result the dynamic behaviors of basin are confirmed, and thus the dynamics of channel head advance and channel network are shown to represent better than the method using the topographic chart manually.

A Study of Coarse Bed Materials in Small Streams in Rocky Mountains (로키 산맥 소하천의 조립질 하상 퇴적물에 관한 연구)

  • Kim, Jong-Wook
    • Journal of the Korean Geographical Society
    • /
    • v.33 no.1
    • /
    • pp.1-16
    • /
    • 1998
  • This study surveyed intensively the relationships between grain size of coarse bed materials and some principal factors in channel system, drainage area and channel slope, in Rocky Mountains. The result of this research shows that there are statistically significant relationships between these factors. Generally, the grain size and the channel slope exponentially decreased in the study area with the increase in drainage area. However, there are great differences in grain size and channel slope between upstream and downstream channels. The boundary lines are commonly located at near the mouth of canyon. From these results, it can be concluded that the bed material characteristics and the channel slope are strongly influenced by the geological and geomorphological background of the drainage basin in this study area.

  • PDF

Bicycle Optimal Path Finding Considering Moving Loads (운행부하를 고려한 자전거 최적 경로탐색 기법)

  • Yang, Jung Lan;Kim, Hye Young;Jun, Chul Min
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.4
    • /
    • pp.89-95
    • /
    • 2012
  • Recent planning for bicycle use is relatively low compared to other studies. Although studies for the bicycle roads accessibility are actively underway, those considering topographical elements and characteristics of the user behaviors are very limited. Choosing paths of cyclists is typically influenced by slopes and intersections as well as optimal distance. This study presents a method to find optimal paths considering topographical elements in case of choosing paths for school commuting using bicycles. Conversion formulae suggested here are tested on a Songpa area using round-trip directions and compared with traditional optimal path computation.