• Title/Summary/Keyword: 지하저장

Search Result 412, Processing Time 0.024 seconds

Application of A Discrete Fracture Flow and Mass Transport Simulation Technique Assessing Tightness Criteria for Underground LPG Storage Cavern (지하 LPG 저장공동의 기밀성평가를 위한 분리열극개념의 지하수유동 및 용질이동 모형 모의기법 적용)

  • 한일영;조성만;정광필
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.155-165
    • /
    • 1995
  • Fluid flow studies of fractured rocks require three-dimensional modeling of the fracture system. The stochastic discrete fracture models constructed by Monte Carlo simulation technique were applied to the analysis of groundwater flow and mass transport in fractured rock for the assessment of tightness criteria of underground LPG storage cavern. The parameters that most affect the conceptual discrete fracture modeling proved either fracture orientation or size and on the fract'lre flow interpretation proved conductive fracture intensity. The fracture transmissivity played important role in solute transport in fractured rock simulated by particle tracking approach. It was partly recognized that the calibrated stochastic discrete fracture model can be used for the tightness criteria of underground LPG storage cavern.

  • PDF

건축전력시설물의 설계 및 감리(하)

  • 이선형
    • Electric Engineers Magazine
    • /
    • v.180 no.8
    • /
    • pp.22-33
    • /
    • 1997
  • 전기설계 및 감리자는 그 건축물의 목적과 사용용도 그리고 계획설계자의 의지를 충분히 파악하지 않으면 좋은 설계와 감리가 될 수 없다. 건축물이란 일단의 대지 위의 지붕과 벽 또는 기둥으로서 거주 작업, 저장, 등의 용도에 쓰이는 것을 말한다. 또 여기서 부속되는 대문, 담장, 굴뚝은 물론 지하실, 지하상가와 같은 지하구축물과 탑비, 기념상, 선전탑, 기타 지붕과 벽 등이 없는 것이라도 여기에 포함된다.

  • PDF

Case Study on Induced Seismicity during the Injection of Fluid Related to Energy Development Technologies (에너지개발기술에 있어 유체주입에 따른 유발지진 발생 사례분석)

  • Lee, Chung-In;Min, Ki-Bok;Kim, Kwang-Il
    • Tunnel and Underground Space
    • /
    • v.24 no.6
    • /
    • pp.418-429
    • /
    • 2014
  • Induced seismicity related to four energy development technologies that involve fluid injection or withdrawal: geothermal energy, conventional oil and gas development including enhanced oil recovery (EOR), shale gas recovery, and carbon capture and storage (CCS) is reviewed by literature investigation. The largest induced seismic events reported in the technical literature are associated with projects that did not balance the large volume of fluids injected into, or extracted from the underground reservoir. A statistical observation shows that the net volume of fluid injected and/or extracted may serve as a proxy for changes in subsurface stress conditions and pore pressure, and other factors. Energy technology projects that are designed to maintain a balance between the amount of fluid being injected and the amount of fluid being withdrawn, such as geothermal and most oil and gas development, may produce fewer induced seismic events than technologies that do not maintain fluid balance, such as long-term wastewater disposal wells and CCS projects.

Design of Caching Scheme for Mobile Underground Geospatial Information Map System (모바일용 지하공간정보지도 관리 시스템에서 응답속도 향상을 위한 캐싱 기법)

  • Kim, Yong-Tae;Kouh, Hoon-Joon
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.1
    • /
    • pp.7-14
    • /
    • 2022
  • Unlike general maps, the underground geospatial Information is a system made to view underground information in a 3D shape. This system is managed by a tile maps to lighten the data. But there are various underground structures in the basement, and the structures are made of 3D data, so the data size is large. Therefore, when a client mobile program requests a tile map, the service server fetches the requested tile map from the DB server and transmits ti to the client, but there is a transmission delay time problem. In this paper, we design the tile cache method to improve the request response speed for the tile map data provided to the client in the mobile underground geospatial information system. We propose a method in which a service server predicts and prefetchs the next tile map while the client is viewing tile map, and stores the prefetching data in the memory of client mobile terminal. Then, the transmission delay time problem can be solved.

A Study on the Optimum of Safety for a LPG Storage Tank using TRIZ (TRIZ를 활용한 LPG 저장탱크의 안전성에 관한 최적화방안)

  • Leem, Sa-Hwan;Huh, Yong-Jeong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2008.05a
    • /
    • pp.49-51
    • /
    • 2008
  • 가스의 수요가 늘어나면서 대량수요처에 대한 위험성과 안전성을 확보하기 위한 노력이 필요한 시점이다. 본 연구에서는 LPG저장탱크의 안전성과 경제성을 고려한 저장탱크를 파악하기 위하여 TRIZ 기법을 활용하였다. 지상형은 화염 등에 의한 위험성이 높으며, 지하매몰형은 부식 등에 의한 경제적 손실이 크다. 따라서 지상형과 매몰형에 대한 문제점을 해결하기 위해 6SC(6 Step Creativity)을 응용하였으며, 그 결과 지하격납형을 도출하였다.

  • PDF

Mechanical Properties of a Lining System under Cyclic Loading Conditions in Underground Lined Rock Cavern for Compressed Air Energy Storage (복공식 지하 압축공기에너지 저장공동의 내압구조에 대한 반복하중의 역학적 영향평가)

  • Cheon, Dae-Sung;Park, Chan;Jung, Yong-Bok;Park, Chul-Whan;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.77-85
    • /
    • 2012
  • In a material, micro-cracks can be progressively occurred, propagated and finally lead to failure when it is subjected to cyclic or periodic loading less than its ultimate strength. This phenomenon, fatigue, is usually considered in a metal, alloy and structures under repeated loading conditions. In underground structures, a static creep behavior rather than a dynamic fatigue behavior is mostly considered. However, when compressed air is stored in a rock cavern, an inner pressure is periodically changed due to repeated in- and-out process of compressed air. Therefore mechanical properties of surrounding rock mass and an inner lining system under cyclic loading/unloading conditions should be investigated. In this study, considering an underground lined rock cavern for compressed air energy storage (CAES), the mechanical properties of a lining system, that is, concrete lining and plug under periodic loading/unloading conditions were characterized through cyclic bending tests and shear tests. From these tests, the stability of the plug was evaluated and the S-N line of the concrete lining was obtained.

Analysis of Groundwater Flow into Underground Storage Caverns by Using a Boundary Element Model (경계요소모형을 이용한 지하 저장공동의 지하수 유입량 분석)

  • Chung, Il-Moon;Lee, Jeong-Woo;Cho, Won-Cheol
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.7 s.156
    • /
    • pp.537-544
    • /
    • 2005
  • For the proper management of high pressurized gas storage caverns, analysis of groundwater flow field and inflow quantity according to the groundwater head, gas storage pressure and water curtain head should be performed. The finite element method has been widely used for the groundwater flow analysis surrounding underground storage cavern because it can reflect the exact shape of cavern. But the various simulations according to the change of design factors such as the width of water curtain, shape of cavern etc. are not easy when elements were set up. To overcome these limitations, two dimensional groundwater flow model is established based on the boundary element method which compute the unknown variable by using only the boundary shape and condition. For the exact computation of drainage rate into cavern, the model test is performed by using the exact solution and pre-developed finite element model. The test result shows that the model could be used as an alternative to finite element model when various flow simulations are needed to determine the optimizing cavern shape and arrangement of water curtain holes and so forth.

Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration (CO2 지하저장과 연계한 원유회수증진 기술)

  • Kim, Hyung-Mok;Bae, Wi-Sup
    • Tunnel and Underground Space
    • /
    • v.23 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Enhanced oil recovery (EOR) technology coupled with underground carbon dioxide sequestration is introduced. $CO_2$ can be injected into an oil reservoir in order to enhance oil production rate and $CO_2$ EOR can be turned into CCS in a long term sense. Coupling $CO_2$ EOR with CCS may secure a large scale and consistent $CO_2$ source for EOR, and the $CO_2$ EOR can bring an additional economic benefit for CCS, since the benefit from enhanced oil production by $CO_2$ EOR will compensate costs for CCS implementation. In this paper, we introduced the characteristics of $CO_2$ EOR technology and its market prospect, and reviewed the Weyburn $CO_2$ EOR project which is the first large-scale $CO_2$ EOR case utilizing an anthropogenic $CO_2$ source. We also introduced geotechnical elements for a successful and economical implementation of $CO_2$ EOR with CCS and they were a miscroseismic monitoring during and after injection of $CO_2$, and determination of minimum miscible pressure (MMP) and maximum injection pressure (MIP) of $CO_2$.

A comparative study on stability evaluation of caverns by 2D continuum analysis in terms of shape factor (2차원 연속체 해석에 의한 지하공동 형상비별 안정성 평가 비교)

  • You, Kwang-Ho;Jung, Ji-Sung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.10 no.2
    • /
    • pp.193-205
    • /
    • 2008
  • The construction of underground structures such as oil and food storage caverns are recently increasing in our country. The stability of those underground caverns are greatly influenced by their shape and size. In this study therefore, the effect that the shape of an underground cavern have on its stability were analyzed in terms of safety factor. To this end, caverns with 5 different shapes were investigated and sensitivity analyses were performed based on rock class, overburden, and lateral earth pressure coefficient. The proper amount of shotcrete and rockbolt as supports of a cavern was also assumed based on the shape and site of the cavern and rock conditions. This study is expected to be helpful in designing and evaluating the stability of caverns in future.

  • PDF