• Title/Summary/Keyword: 지하물리탐사

Search Result 378, Processing Time 0.029 seconds

GEOTECHNICAL ENVIRONMENT SURVEY (2) (고심도 지반환경 조사 - 비파괴 물리탐사의 적용 (2))

  • HoWoongShon;SeungHeeLee;HyungSooKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.261-268
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechnical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

  • PDF

공주 능치지역 천부 지하구조에 대한 지구물리학적 연구

  • Kim, Gi-Hyeon;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2001
  • Geophysical survey was carried out to derive some information on the existence of near-surface anomalous body at Reung-Chi area in Kongju. Resistivity, seismic, magnetic and gravity method were applied. Geophysical survey that was applied was the electrical resistivity survey, seismic survey, magnetic survey, gravity survey. These surveys are analyzed to provide data of high resolution. As a result of analysis of resistivity survey, anomalies showing high resistivity anomaly than around appeared, and the one showing M-shape out of those explains the possibility that underground common or other underground structure or geographical anomalous zone could exist in the underground. As a result of analysis of seismic survey, it is clear that the low velocity layer is spread as far as the bottom of the underground. It is possible to presume that it is a phenomenon appearing while going through the underground space where it is lying in the underground. Area that shows unusual situation in interpretation of data on seismic waves are included into the area that once showed resistivity anomaly, the results of both seismic surveys come in accord. As a result of magnetic survey, a circle-shape of twin magnetic fields in the area where abnormalities are shown between electrical resistivity survey and seismic survey is appeared. Given the area of gravity survey, abnormalities whose density is different from the one around the bottom of the underground. As a result of analogizing the data of underground of the subsurface based on analysis of data from each survey, it was interpreted that anomalous zone exists commonly in the research areas.

  • PDF

낙동강변 충적층 시추자료와 지구물리탐사자료의 연관성

  • Ham, Se-Yeong;Hwang, Hak-Su;Kim, Hyeong-Su;Jeong, Jae-Yeol;Moon, Chang-Gyu;Cha, Yong-Hun;Jang, Seong
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.09a
    • /
    • pp.552-556
    • /
    • 2003
  • 창원시 대산면 갈전리의 강변여과수 취수지역의 8개의 시추공의 시추지료로부터 파악된 지하지질과 물리탐사자료를 비교하여 둘 간의 연관성을 검토하였다. 본 연구에서는 이미 얻어진 시추공 자료와 비교ㆍ검토하기 위하여 지구물리탐사를 실시하였다. 수행된 지구물리탐사는 쌍극자배열 전기비저항 수평탐사, 슐럼버져법배열 전기비저항 수직탐사, 지하투과레이다탐사이다. 전기비저항 수평탐사에 의하면 저비저항치의 두께는 낙동강변에 가까울수록 두꺼워지는 경향성을 보이고 있다. 전기비저항 수직탐사 결과는 시추자료와 비교적 잘 일치하고 있으며 지표로부터 세립질 모래층, 중립질 모래층, 세립질 모래층의 구분이 수직탐사 결과에서 잘 나타나고 있다. 또한 GPR탐사와 전기비저항 수직탐사 결과에 의하면, 지하수면은 6m 부근에 위치하고 있음을 알 수 있다.

  • PDF

GEOTECHNICAL ENVIRONMENT SURVEY (1) (고심도 지반환경 조사 - 지반조사 (1))

  • HoWoongShon;DaeKeunLee;SangKyuKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.231-244
    • /
    • 2003
  • Lots of various utilities are buried under the surface of the earth. The effective handling of the underground utilities is becoming the big subject and project for the harmonious management and administration of the city. To detect the position and depth of buried underground utilities, GPR and Induced EM surveys are commonly used. However, they have limitations, such as shallow skin-depth and non-availability in the areas where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels. The aim of this study is to find the efficient geophysical method which can overcome these limitations. For this purpose, various geophysical mehods were applied in the site of poor geotechnical environment.

  • PDF

Subsurface Imaging by a Small-loop EM Survey (소형루프 전자탐사법에 의한 지하 영상화)

  • Lim Jin-Taik;Cho In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.187-194
    • /
    • 2003
  • A small-loop electromagnetic (EM) system using multiple frequencies has advantages in survey speed and cost despite of limitation on its depth of investigation. Therefore, small-loop EM surveys have been frequently used on various site investigations involving engineering and environmental problems. We have developed a subsurface imaging technique using small loop EM data. We used a one-dimensional (ID) inversion method to reconstruct a subsurface image from frequency EM sounding data. Tests using simulated data show that the method can reasonably recover the subsurface resistivity structure. Also, the method was tested on field data obtained with multiple frequency small loop EM system at a farm in Chunchon, Korea. The resistivity image obtained form field data compares favorably with the image from the dipole-dipole resistivity survey.

4-D Inversion of Geophysical Data Acquired over Dynamically Changing Subsurface Model (시간에 대해 변화하는 지하구조에서 획득한 물리탐사 자료의 역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.117-122
    • /
    • 2006
  • In the geophysical monitoring to understand the change of subsurface material properties with time, the time-invariant static subsurface model is commonly adopted to reconstruct a time-lapse image. This assumption of static model, however, can be invalid particularly when fluid migrates very quickly in highly permeable medium in the brine injection experiment. In such case, the resultant subsurface images may be severely distorted. In order to alleviate this problem, we develop a new least-squares inversion algorithm under the assumption that the subsurface model will change continuously in time. Instead of sampling a time-space model into numerous space models with a regular time interval, a few reference models in space domain at different times pre-selected are used to describe the subsurface structure continuously changing in time; the material property at a certain space coordinate are assumed to change linearly in time. Consequently, finding a space-time model can be simplified into obtaining several reference space models. In order to stabilize iterative inversion and to calculate meaningful subsurface images varying with time, the regularization along time axis is introduced assuming that the subsurface model will not change significantly during the data acquisition. The performance of the proposed algorithm is demonstrated by the numerical experiments using the synthetic data of crosshole dc resistivity tomography.

  • PDF

Application of Geophysical Methods to Cavity Detection at the Ground Subsidence Area in Karst (물리탐사 기술의 석회암 지반침하 지역 공동탐지 적용성 연구)

  • Kim, Chang-Ryol;Kim, Jung-Ho;Park, Sam-Gyu;Park, Young-Soo;Yi, Myeong-Jong;Son, Jeong-Sul;Rim, Heong-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.4
    • /
    • pp.271-278
    • /
    • 2006
  • Investigations of underground cavities are required to provide useful information for the reinforcement design and monitoring of the ground subsidence areas. It is, therefore, necessary to develop integrated geophysical techniques incorporating different geophysical methods in order to accurately image and to map underground cavities in the ground subsidence areas. In this study, we conducted geophysical investigations for development of integrated geophysical techniques to detect underground cavities at the field test site in the ground subsidence area, located at Yongweol-ri, Muan-eup, Muan-gun, Jeollanam-do. We examined the applicability of geophysical methods such as electrical resistivity, electromagnetic, and microgravity to cavity detection with the aid of borehole survey results. The underground cavities are widely present within the limestone bedrock overlain by the alluvial deposits in the test site where the ground subsidences have occurred in the past. The limestone cavities are mostly filled with groundwater or clays saturated with water in the site. The cavities, thus, have low electrical resistivity and density compared to the surrounding host bedrock. The results of the study have shown that the zones of low resistivity and density correspond to the zones of the cavities identified in the boreholes at the site, and that the geophysical methods used are very effective to detect the underground cavities. Furthermore, we could map the distribution of cavities more precisely with the study results incorporated from the various geophysical methods. It is also important to notice that the microgravity method, which has rarely used in Korea, is a very promising tool to detect underground cavities.

Three-dimensional Finite-difference Time-domain Modeling of Ground-penetrating Radar Survey for Detection of Underground Cavity (지하공동 탐지를 위한 3차원 시간영역 유한차분 GPR 탐사 모델링)

  • Jang, Hannuree;Kim, Hee Joon;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.1
    • /
    • pp.20-28
    • /
    • 2016
  • Recently many sinkholes have appeared in urban areas of Korea, threatening public safety. To predict the occurrence of sinkholes, it is necessary to investigate the existence of cavity under urban roads. Ground-penetrating radar (GPR) has been recognized as an effective means for detecting underground cavity in urban areas. In order to improve the understanding of the governing physical processes associated with GPR wave propagation, and interpret underground cavity effectively, a theoretical approach using numerical modeling is required. We have developed an algorithm employing a three-dimensional (3D) staggered-grid finite-difference time-domain (FDTD) method. This approach allows us to model the full electromagnetic wavefield associated with GPR surveys. We examined the GPR response for a simple cavity model, and the modeling results showed that our 3D FDTD modeling algorithm is useful to assess the underground cavity under urban roads.

Achievements and Tasks of Korea-Japan Geophysical Exploration through Burial mounds Exploration (고분 탐사를 통해 본 한·일 물리탐사의 성과와 과제)

  • Shin, Jong woo
    • Korean Journal of Heritage: History & Science
    • /
    • v.48 no.4
    • /
    • pp.74-93
    • /
    • 2015
  • Geophysical survey of Korea was introduced in Nara National Research Institute of Cultural Heritage in 1995. At that time, it has been activated geophysical survey of architecture and civil engineering in Korea. But there was no exploration experts to be combined the archaeology. For this reason, National Research Institute of Cultural Heritage has introduced the physical exploration. Through the expert exchanges South Korea and Japan carried out joint exploration. And it has increased the reliability of the exploration method and exploration results. It is GPR the most method commonly in geophysical exploration. There are many usability before excavation because of good resolution. However, the shallow GPR penetration depth has limitations in large mounds. We were able to take advantage of the resistivity analysis program to study the underground structure to deep through the experts exchange. We was able to get a good result that overcomes the limitations of GPR exploration in a number of burial mounds including Naju bokamri by the resistivity analysis program. In particular, we confirmed the location of the burial main body by compares the results of exploration and excavation results. In the future we will perform a convergence research of exploration and archaeology through a variety of joint research. In addition we will have to build a new network of archaeological science.