• Title/Summary/Keyword: 지하매설물 탐사

Search Result 46, Processing Time 0.025 seconds

Numerical Analysis of Electrical Resistance Variation according to Geometry of Underground Structure (지하매설물의 기하학적 특성에 따른 전기저항 변화에 대한 수치 해석 연구)

  • Kim, Tae Young;Ryu, Hee Hwan;Chong, Song-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.49-62
    • /
    • 2024
  • Reckless development of the underground by rapid urbanization causes inspection delay on replacement of existing structure and installation new facilities. However, frequent accidents occur due to deviation in construction design planned by inaccurate location information of underground structure. Meanwhile, the electrical resistivity survey, knowns as non-destructive method, is based on the difference in the electric potential of electrodes to measure the electrical resistance of ground. This method is significantly advanced with multi-electrode and deep learning for analyzing strata. However, there is no study to quantitatively assess change in electrical resistance according to geometric conditions of structures. This study evaluates changes in electrical resistance through geometric parameters of electrodes and structure. Firstly, electrical resistance numerical module is developed using generalized mesh occurring minimal errors between theoretical and numerical resistance values. Then, changes in resistances are quantitatively compared on geometric parameters including burial depth, diameter of structure, and distance electrode and structure under steady current condition. The results show that higher electrical resistance is measured for shallow depth, larger size, and proximity to the electrode. Additionally, electric potential and current density distributions are analyzed to discuss the measured electrical resistance around the terminal electrode and structure.

Exploration of underground utilities using method predicting an anomaly (이상대 판정기법을 활용한 지하매설물 탐사)

  • Ryu, Hee-Hwan;Kim, Kyoung-Yul;Lee, Kang-Ryel;Lee, Dae-Soo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.205-214
    • /
    • 2015
  • Rapid urbanization and industrialization have caused increased demand for underground structures such as cable, and other utility tunnels. Recently, it has become very difficult to construct new underground structures in downtown areas because of civil complaints, and engineering problems related to insufficient information about existing underground structures, cable tunnels in particular. This lack of information about the location and direction-of-travel of cable tunnels is causing many problems. To solve these problems, this study was focused on the use of geophysical exploration of the ground in a way that is theoretically, different from previous electrical resistivity surveys. An electric field analysis was performed on the ground with cable tunnels using Gauss' law and the Laplace equation. The electrical resistivity equation, which is a function of the cable tunnel direction, the cable tunnel location, and the electrical conductivity of the cable tunnel, can be obtained through electrical field analysis. A field test was performed for the verification of this theoretical approach. A field test results provided meaningful data.

A Study on Applicability of Water Pipe Detecting Using GPR (상수관로 탐사에 대한 지중레이더의 적용가능성에 관한 연구)

  • Lee, Won-Jong;Lim, Sung-Min;Choi, Yun-Soo;Min, Kwan-Sik
    • Journal of Cadastre & Land InformatiX
    • /
    • v.45 no.2
    • /
    • pp.131-147
    • /
    • 2015
  • In modern society, as to the underground urban infrastructure facilities(communication electricity water and sewage gas etc.) were contained many risks because of excavating. The exact position of underground facilities and the attribute information should be built in order to prevent accidents. As the result of analyzing the public surveying results from 2004 to 2009, it shows that low detecting rate of water pipeline which is only 52.4%, because the exploration of electromagnetic induction only detect metal pipeline and positioning survey only detect new pipeline before burying. Therefore development and verification of the correct and efficient exploration techniques are needed to improve the detecting rate. In this study, determined based on the location measurement results for the non-metal pipes and metal pipes before burial. It was compared with values that obtained through the ground penetrating radar and electromagnetic induction detecting. As a result, detecting rate of the concrete section showed a 100%, unpaved section showed a 94.7%, asphalt section showed 60%. So it confirmed the applicability of the ground penetrating radar at underground facilities detecting.

Exploration of underground utilities using method predicting an anomaly(II) - field application (전기비저항을 이용한 지하매설물 탐사(II) - 현장실험 중심으로)

  • Ryu, Hee Hwan;Cho, Seon Ah;Kim, Kyoung Yul;Cho, Gye Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.449-461
    • /
    • 2017
  • The uncertain existence and insufficient information of underground structures, such as pipe lines and cable tunnels, is causing many problems related to route plan, design, construction of new underground structures. The theoretical equations that is able to predict the location, size, and direction of underground structures through electric field analysis are suggested at the previous study (Ryu., 2015). Three field tests were performed for predicting the location, size, and direction of underground structures and the existence and size of sink-hole. Prediction results were reflected at the design and follow-up measures were performed.

Ground penetrating radar testing in a sand tank for detection of buried pipes (매설파이프 감지를 위한 지하 투과 레이다 모래 모형조 실험)

  • Kim, Hyeong Su
    • Journal of the Korean Geophysical Society
    • /
    • v.1 no.1
    • /
    • pp.59-68
    • /
    • 1998
  • Ground penetrating radar (GPR) experiments were performed in a sand tank to study the ability of detection of buried pipes and to characterize the signal of the reflection wave. The ratios of diameter of buried pipes to the depth were set 4 up to 24 % and materials were metal, synthetic resin, and wood. In case of groundwater table below buried materials, strong reflection signals were observed irrespective of diameter and depth except for wood. While it is very difficult to detect the reflection signals in case that the groundwater table is set to higher than buried materials. The reflection signals from the bottom of the sand tank, however, were clearly observed even in case of higher groundwater table. This implies that the weak reflection signals from the buried materials are not all due to the wave attenuation. The vertical reflection profiling method is recommended in case that the object of the survey is to find horizontal position of buried material because this method has the advantage in cost and time of survey. However, the full or partial CMP gather method is recommended in case that the objects of the survey are to get the detailed subsurface information, i.e. the depth to buried material, interval velocity of geological layer, and mapping the groundwater table.

  • PDF

Detection of the Pipe Leak for Water Distribution System Using Ground Penetrating Radar (GPR을 이용한 상수관로의 누수 탐사)

  • Park, In-Chan;Cho, Won-Cheol
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1271-1274
    • /
    • 2006
  • 지하레이다(Ground Penetrating Radar, GPR)를 이용하여 지표하의 상수관로를 지표에서 송신안테나와 수신안테나를 이용해서 손쉽게 측정하게 된다. 송신안테나는 지표하에 전자기파를 송신하고 지하 매질을 투과한 파가 수신안테나에 도달하는 시간을 측정하여 지표하 매질의 특성을 파악할 수 있다. 수신파의 도달시간은 지표하 매질의 특성에 따라서 변화하며, 이를 통해 지표하 매질과 매질 깊이 등을 파악할 수 있다. 일반적으로 상수관로를 매설할 경우 관로 주변의 토양은 균등하게 되므로 기 매설된 상수관로 주변에 누수가 발생하게 되면, 관로 주변의 토양은 포화상태이거나 수압으로 인해서 공동이 형성될 경우가 많다. 이때 반사에너지의 유전율 증가 혹은 감소 특성으로 인해서 주변 매질과는 매우 상이한 결과를 보이게 된다. GPR탐사는 단순히 반사된 신호진폭의 크기를 나타내며 이러한 반사에너지의 크기에 관계되는 것은 매설물의 유전율이 주위 지반이 갖는 유전율과의 차이에서 기인하기 때문이다. 탐사 대상 상수관로에 대한 정보를 확보하여 GPR 탐사를 수행한 결과 관로 탐사를 위한 GPR의 결과는 매우 유용하게 사용될 것으로 판단되며, 이를 바탕으로 누수 발생 이력이 있는 다양한 관로주변 조건을 대상으로 탐사를 실시할 경우 상수관망시스템의 효율적인 관리 및 보수에 매우 유용한 방법이 될 수 있을 것으로 판단된다.

  • PDF

Detection of Buried Objects and Imaging of Subsurface Resistivity Structure using Loop-Loop EM Methods (소형루프 전자탐사법을 이용한 매설물 탐지 및 지하 전기비저항 영상화)

  • Seol Soon Jee;Song Yoonho;Cho Seong-Jun;Son Jeong-Sul;Chung Seung-Hwan
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.309-315
    • /
    • 2002
  • Conventional electromagnetic (EM) method using small loops as a source and receiver has been used in detection of conductive buried objects like a metal detector or in qualitative estimation of the subsurface conductivity variation. Recently, however, since detection of buried objects and imaging of the subsurface conductivity distribution in a relatively conductive area are in a high demand for environmental and engineering purposes, the quantitative interpretation technique of EM data is actively studied. In this regard, we introduce a brief principle of EM survey and show an example of the detection of buried conductive material and imaging of the subsurface conductivity distribution based on data measured at a test survey area. Through this study, we show that multi-frequency EM surveys using small loops may be a good solution to give quick and detail information of subsurface in a conductive survey area.