• Title/Summary/Keyword: 지하매설물 탐사

Search Result 46, Processing Time 0.022 seconds

GEOTECHNICAL ENVIRONMENT SURVEY (2) (고심도 지반환경 조사 - 비파괴 물리탐사의 적용 (2))

  • HoWoongShon;SeungHeeLee;HyungSooKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.261-268
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechnical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

  • PDF

Precise Detection of Buried Underground Utilities by Non-destructive Electromagnetic Survey (비파괴 전자탐사에 의한 지하 매설물의 정밀탐지)

  • Shon, Ho-Woong;Lee, Seung-Hee;Lee, Kang-Won
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.22 no.3
    • /
    • pp.275-283
    • /
    • 2002
  • To detect the position and depth of buried underground utilities, method of Ground Penetrating Radar(GPR) survey is the most commonly used. However, the skin-depth of GPR is very shallow, and in the places where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels, GPR method has limitations in application and interpretation. The aim of this study is to overcome these limitations of GPR survey. For this purpose the site where the GPR survey is unsuccessful to detect the underground big pipes is selected, and soil tests were conducted to confirm the reason why GPR method was not applicable. Non-destructive high-frequency electromagnetic (HFEM) survey was newly developed and was applied in the study area to prove the effectiveness of this new technique. The frequency ranges $2kHz{\sim}4MHz$ and the skin depth is about 30m. The HFEM measures the electric field and magnetic field perpendicular to each other to get the impedance from which vertical electric resistivity distribution at the measured point can be deduced. By adopting the capacitive coupled electrodes, it can make the measuring time shorter, and can be applied to the places covered by asphalt an and/or concrete. In addition to the above mentioned advantages, noise due to high-voltage power line is much reduced by stacking the signals. As a result, the HFEM was successful in detecting the buried underground objects. Therefore this method is a promising new technique that can be applied in the lots of fields, such as geotechnical and archaeological surveys.

Non-Destructive Precise Electromagnetic Surveying for the Deep Underground Utilities (고심도 지중매설물의 지하측랑을 위한 비파괴 정밀 전자측량)

  • 손호웅;이강원;김형수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.2
    • /
    • pp.109-121
    • /
    • 2003
  • Lots of various utilities are buried under the surface. The effective management of underground utilities is becoming the very important subject for the harmonious administration of the city. Ground Penetrating Radar(GPR) survey including other various underground survey methods, is mainly used to detect the position and depth of buried underground utilities. However, GPR is not applicable, under the circumstances of shallow depth and places, where subsurface materials are inhomogeneous and are composed of clay, salt and gravels. The aim of this study is to overcome these limitations of GPR and other underground surveys. High-frequency electromagnetic (HFEM) method is developed for the non-destructive precise deep surveying of underground utilities. The method is applied in the site where current underground surveys are useless to detect the underground big pipes, because of poor geotechlical environment. As a result, HFEM survey was very successful in detecting the buried shallow and deep underground pipes and in obtaining the geotechnical information, although other underground surveys including GPR were not applicable. Therefore this method is a promising new technique in the lots of fields, such as underground surveying and archaeology.

Feasibility Analysis of Exploring Underground Utilities Using Muon (뮤온 입자를 활용한 지하매설물 탐사 가능성 분석)

  • Seo, Seunghwan;Chung, Moonkyung;Kwak, Kiseok;Kang, Jae Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.137-147
    • /
    • 2022
  • Various geophysical exploration methods are used to determine the exact location of underground utilities, and many studies have been performed to improve the accuracy. This study analyzed the feasibility of exploring underground utilities through a new exploration method using cosmic ray muon. A prototype of a portable muon detector was manufactured by combining a scintillator and a silicon photomultiplier. Further, a calibration operation was performed on the muon count rate. The ground thickness of the ground model was measured using the muon detector prototype, where the value could be estimated with an error of about 3%, close to the actual. In addition, the theoretical basis for tomography analysis technology was analyzed to utilize the muon detector for exploring underground utilities, and a zenith angle correction method was presented. This study revealed that the technology of exploration using muon can analyze density with high resolution and will be used for exploring underground utilities.

A Study on the Detecting Accuracy of EM Induction Survey Data of Buried Utility (전자유도 탐사를 이용한 지하매설물 탐지 정확도 분석)

  • Kwon, Hyoung-Seok;Choi, Joonho;Hwang, Daejin;Kim, Munjae;Yoon, Jeoungseob
    • Journal of Korean Society of societal Security
    • /
    • v.1 no.4
    • /
    • pp.73-81
    • /
    • 2008
  • Electromagnetic induction surveys are one of the useful methods to detect the location and buried depth of underground utilities by measuring horizontal and vertical magnetic fields. It can effectively detects single buried utility with the accuracy of within 20 cm. However when another utility is buried near to target one, the accuracy of utility location considerably decreases due to the distortion of magnetic fields caused from adjacent utility. This study shows the ways to verify the location and buried depth of target utility when magnetic fields does not show symmetric distribution due to adjacent another utility. Using Bluetooth wireless communication tools, we developed the way to records measured magnetic fields to handheld PDA. We investigated the criteria for minimum distance of two adjacent utilities to separate the individual responses through field model test.

  • PDF

The Probing of Underground Structures Using Ground Penetrating Radar (지하 탐사용 레이더를 이용한 매설된 구조물의 탐사)

  • Kim, D.H.;Cho, P.D.
    • Electronics and Telecommunications Trends
    • /
    • v.15 no.5 s.65
    • /
    • pp.86-93
    • /
    • 2000
  • 지하 탐사용 레이더를 이용하여 지하에 매설된 구조물의 위치를 파악하고 그에 따른 근사 이미지의 추출 방법을 제안하였다. 기본원리는 구조물에 의해 산란되어 수신 안테나로 유입되는 펄스신호의 지연시간과 크기를 측정하는 데 있으며, 측정의 실용성을 위하여 레이더 탐색경로에 따른 수신신호의 절대치 적분 방법을 사용하였다. 일반적으로 지하매질은 침투 주파수에 따라서 다양한 분산 및 손실 특성을 나타내는데, 이러한 매질 특성은 다항 Debye 모델을 이용하여 기술되었다. 3차원 전파(電波) 전파(傳播)를 위한 시뮬레이션에는 FDTD(Finite Difference Time Domain) 방법을 사용하였다.

Analysis of Position Accuracy for Underground Facility Using RTK-GPS (RTK-GPS를 이용한 지하시설물의 위치 정확도 분석)

  • 박운용;이종출;정성모
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2003
  • The complicated facilities on the ground have begun to be laid under the ground as increasing emphasis on the beauty of cities due to centralization. But, as the kind of the facilities have been concentrated on the narrow area, accidents occur due to the difficulty of maintenance and the inaccuracy of location information. In this study, first we constructed the field test model to compare with the method of underground probing. So, we could know that the electromagnetic induction method and GPR(Ground Penetration Radar) are useful. It was acquired the position information for the underground facilities using a RTK-GPS. As the result, we have analyzed the accurate position of the underground facility and show the way improving accuracy in detecting and surveying comparing with the traditional surveying method. Also, we hope to contribute the effective maintenance and prevention of disasters to the underground facility as using underground facilities 3D position with Arcview and building the DB of exact depth and underground facilities information system.

Database Development Guideline for the Effective Management of Underground Facilities in Seoul (GIS를 이용한 지하매설물의 효율적 관리방안 : 데이터베이스 설계 및 구축방안을 중심으로)

  • 강영옥;조태영
    • Spatial Information Research
    • /
    • v.5 no.1
    • /
    • pp.115-131
    • /
    • 1997
  • Effective management of underground facilities which include water line, sewer line, electric line, telephone line, gas line etc., is very important for people's safety as well as administrative efficiency. The purpose of this study is four-fold: first, investigate management status of utility information of each utility companies, second, develope classification system of underground facilities and use this classification system for guidelines of database construction and for the exchange of database among utility companies, third, construct database using existing utility maps in pilot study area and identify accuracy of the existing maps and suggest strategy of database construction, fourth, suggest strategy of database maintenance and its organizational plan in connection with national plan.

  • PDF

Underground facilities Detecting Accuracy (지하매설물측량의 정확도)

  • Lee, Jae-Kee;Cho, Jae-Ho;Lee, Jae-Dong;Park, Kyung-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.5 no.1 s.9
    • /
    • pp.139-145
    • /
    • 1997
  • Rapid development of city has made a lots of urban facilities buried under ground, therefore how to bury underground facilities and how to operate them becomes more and more important. However, due to shortage of composite operation data for burying the facilities under ground, a lots of individual and nation's properties have been destroted and even many people killed. under the circumstances, we need to detect the facilities in detail and in accuracy and we can surgest for underground facilities detecting accuracy as below.

  • PDF

GEOTECHNICAL ENVIRONMENT SURVEY (1) (고심도 지반환경 조사 - 지반조사 (1))

  • HoWoongShon;DaeKeunLee;SangKyuKim
    • Journal of the Korean Geophysical Society
    • /
    • v.6 no.4
    • /
    • pp.231-244
    • /
    • 2003
  • Lots of various utilities are buried under the surface of the earth. The effective handling of the underground utilities is becoming the big subject and project for the harmonious management and administration of the city. To detect the position and depth of buried underground utilities, GPR and Induced EM surveys are commonly used. However, they have limitations, such as shallow skin-depth and non-availability in the areas where subsurface materials are not homogeneous and are compose of clays and/or salts and gravels. The aim of this study is to find the efficient geophysical method which can overcome these limitations. For this purpose, various geophysical mehods were applied in the site of poor geotechnical environment.

  • PDF