• Title/Summary/Keyword: 지하개발

Search Result 1,968, Processing Time 0.028 seconds

Applicability Analysis of Measurement Data Classification and Spatial Interpolation to Improve IUGIM Accuracy (지하공간통합지도의 정확도 향상을 위한 계측 데이터 분류 및 공간 보간 기법 적용성 분석)

  • Lee, Sang-Yun;Song, Ki-Il;Kang, Kyung-Nam;Kim, Wooram;An, Joon-Sang
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.10
    • /
    • pp.17-29
    • /
    • 2022
  • Recently, the interest in integrated underground geospatial information mapping (IUGIM) to ensure the safety of underground spaces and facilities has been increasing. Because IUGIM is used in the fields of underground space development and underground safety management, the up-to-dateness and accuracy of information are critical. In this study, IUGIM and field data were classified, and the accuracy of IUGIM was improved by spatial interpolation. A spatial interpolation technique was used to process borehole data in IUGIM, and a quantitative evaluation was performed with mean absolute error and root mean square error through the cross-validation of seven interpolation results according to the technique and model. From the cross-validation results, accuracy decreased in the order of nonuniform rational B-spline, Kriging, and inverse distance weighting. In the case of Kriging, the accuracy difference according to the variogram model was insignificant, and Kriging using the spherical variogram exhibited the best accuracy.

A study on the applicability of under ground structure using steel tubular roof in Korean geotechnical condition (대구경강관을 이용한 지하구조물 축조공법의 국내지반 적용성 연구)

  • Lee, Young-Bock;Kim, Jeong-Yoon;Park, Inn-Joon;Kim, Kyong-Gon;Lee, Jong-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.4
    • /
    • pp.401-409
    • /
    • 2003
  • Recently, the development of underground structures is to be inevitably necessary due to the increase in population and traffic volume that has caused to the limit of urban land use and the heavy traffic jams. Therefore, underground structures such as subway, underground shopping centers, lifeline facilities and so on, have been increasingly constructed, On the other hand, several social problems have occurred during construction, i.e., ground subsidence, noise, and vibration. Therefore, safer and more beneficial methods for underground construction are on the demand. In this research, N.T.R.(New Tubular Roof) method has been modified and utilized for solving those problems and overcoming the difficulties connected with the bored tunnel construction of large underground openings in unfavorable ground, often under the water table, and with overburdens that are too shallow to solve problems of stability using traditional methods. The N.T.R. method has been modified to suit for Korean geotechnical conditions, and was made up for the weak points-the water leakage from walls and tops, the maintenance and the lack of stability-of the conventional methods. This paper dealt with the features and the applicability of N.T.R. Method based on the results from numerical analysis and data from in-situ monitoring system.

  • PDF

A numerical study of pillar reinforcing effect in underground cavern underneath existing structures (지하공간하부 지하저류공동에서의 필라 보강효과에 관한 수치해석적 연구)

  • Seo, Hyung-Joon;Lee, Kang-Hyun;Han, Shin-In;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.5
    • /
    • pp.453-467
    • /
    • 2012
  • Usage of underground space is increasing at metropolitan city. More than 90% of flood damages have occurred at downtown of metropolitan cities. In order to prevent and/or minimize the flood-induced damage, an underground rainwater detention cavern was proposed to be built underneath existing structures. As for underground caverns to be built for flood control, multi-caverns will be mostly adopted rather than one giant cavern because of stability problem. Because of the stress concentration occurring in the pillars between two adjacent caverns, the pillar-stability is the Achilles' heel in multi-caverns. So, a new pillar-reinforcing technology was proposed in this paper for securing the pillar-stability. In the new pillar-reinforcing technology, reinforced materials which are composed of a steel bar and PC strands are used by applying pressurized grouting, and then, by applying the pre-stress to the PC strands and anchor body. Therefore, this new technology has an advantage of utilizing most of the strength that the in-situ ground can exert, and not much relying on the pre-cast concrete structure. The main effect of the pressurized grouting is the increase of the ground strength and more importantly the decrease of stress concentration in the pillar; that of the pre-stress is the increase of the ground strength due to the increase of the internal pressure. In this paper, ground reinforcing effects were verified the stress change in pillar is obtained by numerical analysis at each construction stage. From these results, the effects of pressurized grouting and pre-stress are verified.

Basic Theory and Developments of Discontinous Deformation Analysis Method (불연속변위해석법의 기본이론 및 개발현황)

  • Kim, Yong Il
    • Magazine of korean Tunnelling and Underground Space Association
    • /
    • v.1 no.2
    • /
    • pp.50-58
    • /
    • 1999
  • The Discontinuous Deformation Analysis (DDA) method is a recently developed technique that can be classified as a DEM method. Shi (1988) first proposed the DDA method in his doctoral thesis; computer programs based on the method have been developed and some applications of the DDA method in rock mechanics have been presented in the doctoral thesis and various publications. During past 11 years (1988 - 1999), considerable progresses have been achieved in developments and applications of the DDA method in the rock mechanics. In this paper the basic theory and developments of the DDA method are presented and applications of DDA method in geotechnical engineering are reviewed.

  • PDF

Development of a Windows-based Program for Discrete Event Simulation of Truck-Loader Haulage Systems in an Underground Mine (지하광산 트럭-로더 운반시스템의 이산 사건 시뮬레이션을 위한 Windows용 프로그램 개발)

  • Choi, Yosoon;Park, Sebeom;Lee, Sung-Jae;Baek, Jieun;Jung, Jihoo;Park, Han-Su
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2016
  • We developed a Windows-based program for discrete event simulation of truck-loader haulage systems in an underground mine. The Daesung MDI limestone mine located in Samcheok City, Gangwon Province, Korea was selected as the study area to design the program. The developed program is composed of the graphic user interface (GUI) and simulation engine implemented by Visual Basic.NET 2012 and the GPSS/H simulation language, respectively. When a user sets up input parameters for the discrete event simulation through GUI, the program activates the simulation engine, and then simulation results are displayed on GUI. This paper describes the details of the program development as well as its applications to the study area to determine the optimal number of trucks dispatched at each loading point under different operating conditions.