• Title/Summary/Keyword: 지표침하량

Search Result 82, Processing Time 0.018 seconds

Evaluation of Cavity Characterization Using Infrared Thermal Images (적외선 이미지를 이용한 지하공동 평가)

  • Jang, Byeong-Su;Kim, Young-Seok;Kim, Se-Won ;Choi, Hyun-Jun;Yoon, Hyung-Koo
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.7
    • /
    • pp.69-76
    • /
    • 2023
  • Cavity causes settlement and its remediation after an accident results in significant time and economic losses. This study aims to experimentally evaluate the prospect of using infrared camera to detect and measure underground subsidence. Emissivity is necessary to detect the energy emitted from an object and accurately assess temperature using an infrared camera. The emissivity in laboratory tests is fixed to evaluate a reasonable distance between the infrared camera and the object, and temperature values are assessed at various distances. In field experiments, the cavity of the field experiment is simulated using a PVC pipe with a diameter of 5 cm, artificially buried at depths of 5 and 25 cm from the surface. The infrared camera measurements are taken from 4 PM to 3 PM of the next day (a total of 23 h). The analysis included the time-series temperature distribution and the cooling rate index assessment, which represents the temperature change rate per unit of time. The results showed that various temperature trends are observed depending on the location of the subsidence. This study demonstrates that the infrared camera can be used to assess the condition of the subsurface.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).