• Title/Summary/Keyword: 지표변위

Search Result 194, Processing Time 0.024 seconds

Inter-story Drift Design Method to Improve the Seismic Performance for Steel Moment Frames (철골모멘트골조의 내진성능향상을 위한 층간변위조절기법)

  • Choi, Se-Woon;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.707-714
    • /
    • 2011
  • The inter-story drift ratio is used to evaluate the damage of buildings by the earthquake. This is known that as the inter-story drift ratio decreases, the seismic damage decreases. Although to reduce the inter-story drift ratio is the important issue in the seismic design, no practical inter-story drift design method has bean developed. This study presents an optimal inter-story drift design method to improve the seismic performance of the steel moment frames using the resizing algorithm. The objective function of the proposed method is to minimize the differences of the inter-story drift ratios so that the inter-story drift ratios of the building could be distributed evenly and be reduced. Because this method redesigns the sectional properties of structural members base on the displacement participation factor calculated by the unit-load method, this can improve the seismic performance of the structure without the iterative structural analysis. The efficiency of this algorithm was demonstrated by the application to steel moment frames.

Numerical Analysis of Surface Displacement Due to Explosion in Tunnel (터널 내 폭발에 의한 지표 변위에 관한 수치해석적 연구)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.38 no.4
    • /
    • pp.26-36
    • /
    • 2020
  • With the increase of expansion and use of the underground space, the possibility of an underground explosion by terrorists is increasing. In this study, after modeling a circular tunnel excavated at a depth of 50m, an explosion load was applied to the inside of the tunnel. As for the explosion load, the explosion load of the maximum explosive amount for six types of vehicle booms proposed by ATF (Bureau of Alcohol, Tobacco, and Firearms) was calculated. For the rock mass around the circular tunnel, three types of rock grades were selected according to the support pattern suggested in the domestic tunnel design. Nonlinear dynamic analysis was performed to evaluate the influence of the ground structure by examining the surface displacement using the explosion load and rock mass characteristics as parameters. As a result of the analysis, for grade 1 rock, the influence on the uplift of the surface should be considered, and for grade 2 and 3 rocks, the influence on a differential settlement should be considered. In particular, for grade 3 rocks, detailed analysis is required for ground-structure interaction within 40m. Also, it is considered that the influence of Young's modulus is the main factor for the surface displacement.

Tunnel Convergence and Crown Settlement Using 3D Laser Scanning (3 차원 레이저 스캐닝을 이용한 터널의 천단 및 내공 변위 관측)

  • Lee, Jae-One;Yun, Bu-Yeol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.15 no.2 s.40
    • /
    • pp.67-75
    • /
    • 2007
  • There are a number of risks in constructing tunnel-structures. Therefore, the precise and rapid observation about inside deformation of the tunnel is required to prevent these risks from occurring and to secure safety. But currently, the real situation is that the crown settlement, cavity deformation and ground surface settlement rely upon the universal mensuration which uses total station or various kinds of measuring instruments. Recently, according to improvement and progress of measuring technology, three-dimensional laser scanning is used as the method to provide data for maintaining structures. It solves the reliability problem of measuring method for the transformational volume of existing structures, provides data that enables to judge visually by three-dimensioning the shape change of structures and makes it possible to deliberate speedy countermeasure. And it can also be efficiently used in the structure maintenance and field measurement.

  • PDF

Estimation of Mobilized Passive Earth Pressure Depending on Wall Movement in Sand (모래지반에서 벽체의 변위에 따른 수동측토압 산정)

  • Kim, Tae-O;Park, Lee-Keun;Kim, Tae-Hyung
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.51-60
    • /
    • 2020
  • Estimation of passive earth pressure is an important factor in anchor block, temporary retaining wall and support block of raker that resist lateral earth pressure. In practice, due to ease of use, it is common to estimate the earth pressure using the theory of Coulomb and Rankine, which assumes the failure plane as a straight line. However, the passive failure plane generated by friction between the wall surface and the soil forms a complex failure plane: a curve near the wall and a flat plane near the ground surface. In addition, the limit displacement where passive earth pressure is generated is larger compared to where the active earth pressure is generated. Thus, it is essential to calculate the passive earth pressure that occurs at the allowable displacement range in order to apply the passive earth pressure to the design for structural stability reasons. This study analyzed the mobilized passive earth pressured to various displacement ranges within the passive limit displacement range using the semi-empirical method considering the complex failure plane.

구릉지 완사면의 "U자형 골" 지형발달에 관한 수문학적 연구(제2보)-지형발달 추론을 중심으로-

  • 양해근;박종관
    • Proceedings of the KGS Conference
    • /
    • 2003.11a
    • /
    • pp.78-82
    • /
    • 2003
  • 지형은 지표물질의 변위 혹은 변형, 물질의 화학적 구조가 변함에 따라 변화한다(좌등구 외, 1990). 이러한 지형 프로세스는 물순환계와 밀접한 관계가 있으며, 지표공간을 이루는 대부분의 지형은 지상에 공급된 강우의 유출과정에서 형성된 것이라고 해도 과언이 아니다. 특히 곡저 또는 곡두는 유수의 배출통로인 동시에 유출특성에 기인한 각 종 지형프로세스에 의해서 형성된다(은전 외, 1996). (중략)

  • PDF

구릉지 완사면의 U자형 지형발달에 관한 수문학적 연구(제1보)

  • 양해근;박종관
    • Proceedings of the KGS Conference
    • /
    • 2003.05a
    • /
    • pp.102-103
    • /
    • 2003
  • 지형은 지표물질의 변위 혹은 변형, 물질의 화학적 구조가 변함에 따라 변화한다(좌등구 외, 1990 ). 이러한 지형 프로세스(geomorphological processes)는 물순환계와 밀접한 관계가 있으며, 지표공간을 이루는 대부분의 지형은 지상에 공급된 강우의 유출과정에서 형성된 것이라고 해도 과언이 아니다. 특히 곡저 또는 곡두는 유수의 배출통로인 동시에 유출특성에 기인한 각 종 지형프로세스에 의해서 형성되므로(은전 외, 1996). 사면에서 일어나는 지형 프로세스를 이해하기 위해서는 사면에서의 물의 유출과정에 대한 명확한 규명이 전제가 되어야 한다. (중략)

  • PDF

Study on Combined Use of Inclination and Acceleration for Displacement Estimation of a Wind Turbine Structure (경사 및 가속도 계측자료 융합을 통한 풍력 터빈의 변위 추정)

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Byung-Jin;Yi, Jin-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2015
  • Wind power systems have gained much attention due to the relatively high reliability, good infrastructures and cost competitiveness to the fossil fuels. Advances have been made to increase the power efficiency of wind turbines while less attention has been focused on structural integrity assessment of structural sub-systems such as towers and foundations. Among many parameters for integrity assessment, the most perceptive parameter may be the induced horizontal displacement at the hub height although it is very difficult to measure particularly in large-scale and high-rise wind turbine structures. This study proposes an indirect displacement estimation scheme based on the combined use of inclinometers and accelerometers for more convenient and cost-effective measurements. To this end, (1) the formulation for data fusion of inclination and acceleration responses was presented and (2) the proposed method was numerically validated on an NREL 5 MW wind turbine model. The numerical analysis was carried out to investigate the performance of the propose method according to the number of sensors, the resolution and the available sampling rate of the inclinometers to be used.

A study on numerical modeling method considering gap parameter and backfill grouting of the shield TBM tunnel (쉴드 TBM 터널의 gap parameter와 뒤채움재를 고려한 수치모델링 방법에 대한 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.799-812
    • /
    • 2017
  • Backfill grouting and realistic convergence distribution were not properly considered in previous studies on 2D numerical analysis of a shield TBM tunnel. In this study, a modeling method was suggested to cope with this problem by considering a realistic convergence distribution and proper properties of backfill grouting. To this end, the influence of gap parameter and depth of rock cover on volume loss and composed of ground volume loss around tunnel excavation and surface volume loss were analyzed with a single layer of weathered soil. As a result, most of surface settlements were occurred immediately after excavation. Additional, as depth of rock cover and gap parameter increased, the influence range of surface settlement curves obtained from 2D numerical analyses became broader than a suggested theoretical equation. Therefore, it is inferred that gap parameter should be applied based on load distribution ratio and the property of backfill grouting properly considered for the estimation of the precise behavior of a shield TBM tunnel in 2D numerical analysis.

Effects of Anchor Block on Stability of Concrete Electric Pole (콘크리트전주의 안정성에 미치는 근가의 영향)

  • Ahn, Tae-Bong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.11
    • /
    • pp.5-10
    • /
    • 2012
  • Many electric poles in the softground have been collapsed due to external load. In this study, several tests were performed with variation of numbers and depths of anchor blocks to find effects of anchor blocks on stability of concrete electric poles through earth pressure and displacement analysis. 1.50m depth of anchor block seems appropriate among three kinds of depths. The 2.25m depth of anchor block makes larger displacement due to disturbance caused by excessive excavation. The deeper anchor block, the less earth pressure of passive zone, an active earth pressure gets larger. When two anchor blocks were installed, displacement at top pole decreased 43.8% and 55.6% at ground when 1 anchor block was installed.