DOI QR코드

DOI QR Code

Numerical Analysis of Surface Displacement Due to Explosion in Tunnel

터널 내 폭발에 의한 지표 변위에 관한 수치해석적 연구

  • Received : 2020.12.07
  • Accepted : 2020.12.22
  • Published : 2020.12.30

Abstract

With the increase of expansion and use of the underground space, the possibility of an underground explosion by terrorists is increasing. In this study, after modeling a circular tunnel excavated at a depth of 50m, an explosion load was applied to the inside of the tunnel. As for the explosion load, the explosion load of the maximum explosive amount for six types of vehicle booms proposed by ATF (Bureau of Alcohol, Tobacco, and Firearms) was calculated. For the rock mass around the circular tunnel, three types of rock grades were selected according to the support pattern suggested in the domestic tunnel design. Nonlinear dynamic analysis was performed to evaluate the influence of the ground structure by examining the surface displacement using the explosion load and rock mass characteristics as parameters. As a result of the analysis, for grade 1 rock, the influence on the uplift of the surface should be considered, and for grade 2 and 3 rocks, the influence on a differential settlement should be considered. In particular, for grade 3 rocks, detailed analysis is required for ground-structure interaction within 40m. Also, it is considered that the influence of Young's modulus is the main factor for the surface displacement.

지하공간의 이용범위 확장 및 활용이 증가함에 따라 테러리스트들에 의한 지하 내부 폭발의 발생 가능성이 증가하고 있다. 본 연구에서는 심도 50m의 심도에 굴착된 원형 터널을 모델링한 후, 터널의 내부에 폭발하중을 가하였다. 폭발하중은 ATF(Bureau of Alcohol, Tobacco, and Firearms)에서 제시하는 6종류의 운반용 차량에 대한 최대 폭약량의 폭발하중을 산정하였다. 원형 터널 주변 지반은 국내 터널 설계에서 제시하는 지보패턴에 따른 3종류의 암반등급을 선정하였다. 비선형 동적해석을 수행하여 폭발하중과 지반 특성을 매개변수로 지표 변위를 분석하여 지상 구조물의 영향에 대해 평가하였다. 해석결과, 1등급암에 대해서는 지반의 융기에 대한 영향을 고려해야 하며, 2등급암과 3등급암은 부등침하에 대한 영향을 고려해야 한다. 특히, 3등급암은 40m 이내의 지상 구조물에 대해서는 정밀 분석이 요구된다. 또한 지표 변위는 탄성계수에 의한 영향이 주요인인 것으로 판단된다.

Keywords

References

  1. 김영민, 2011, 가스폭발하중에 의한 터널 구조물의 동적거동해석, 한국터널지하공간학회논문집, Vol. 13, No. 5, pp. 413-430.
  2. 권정훈, 김태환, 최종균, 2009, 사례분석을 통한 지하철 테러에 대한 대책, 한국경호경비학회지, Vol. 18, pp. 1-20.
  3. 류창하, 최병희, 장형수, 강명수, 2015, 발파하중을 받는 지반의 동적 거동 수치 모델링에서 입력변수의 영향, 한국암반공학회지(터널과 지하공간), Vol. 25, No. 3, pp. 255-263.
  4. 송정언, 박 훈, 김승곤, 2009, 충격 하중에 의한 콘크리트 재료의 손상에 관한 실험적 연구, 대한화약발파공학회지(화약.발파), Vol. 27, No. 2, pp. 26-32.
  5. 이경구, 2007, 전산유체동력학에 의한 고급폭발해석, 건축(대한건축학회지), Vol. 51, No. 8, pp. 54-57.
  6. 한국도로공사, 2016, 고속도로 터널공법(ex-TM) 가이드라인, 건설정보사, 서울, pp. 4-31-35.
  7. Ardiace, D.H., 2009, Mohr-Coulomb parameters for modelling of concrete structures, Plaxis Bulletin, Spring issue 2009, pp. 12-15.
  8. Bjerrum, L. 1962, Allowable settlement of structures, In Proceedings of the 3rd European Conference on Soil Mechanics and Foundation Engineering, Wiesbaden, Germany, Vol. 2, pp. 135-137.
  9. Comision Permanente del Hormigon, 1998, EHE-98. Instruccion de hormigon estruct ural EHE-98., Ministerio de Fomento, Madrid, pp. XII-131-132.
  10. De, A., 2012, Numerical simulation of surface explosion over dry, cohesionless soil, Computers and Geotechnics, Vol. 43, pp. 72-79. https://doi.org/10.1016/j.compgeo.2012.02.007
  11. DEPARTMENT OF DEFENSE(DoD), UNIFIED FACILITIES CRITERIA (UFC) Structures to Resist the Effects of Accidental Explosions, UFC 3-340-02, 2008, USA.
  12. Feldgun V.R., Y.S. Karinski, and D.Z. Yankelevsky, 2014, The effect of an explosion in a tunnel on a neighboring buried structure, Tunnelling and Underground Space Technology, Vol 44, pp. 42-55. https://doi.org/10.1016/j.tust.2014.07.006
  13. Koneshwaran, S. and David P. Thambiratnam, Chaminda Gallage, 2015, Response of segmented bored transit tunnels to surface blast, Adv Eng Softw, Vol. 89, pp. 77-89. https://doi.org/10.1016/j.advengsoft.2015.02.007
  14. Laska, Paul R., 2016, Bombs, IEDs, and Explosives Identification, Investigation, and Disposal Techniques, CRC Press, New York, pp. 29.
  15. Liu, H., 2012, Soil-Structure Interaction and Failure of Cast-Iron Subway Tunnels Subjected to Medium Internal Blasting Loading, J. Perform. Constr. Facil., Vol 26, pp. 691-701. https://doi.org/10.1061/(ASCE)CF.1943-5509.0000292
  16. Mitelman, A. and D. Elmo, 2014, Modelling of blast-induced damage in tunnels using a hybrid finite-discrete numerical approch, J. Rock Mechanics and Geotechnical Engineering, Vol 6, pp. 565-573. https://doi.org/10.1016/j.jrmge.2014.09.002
  17. Mobaraki, B. and M. Vaghefi, 2015, Numerical study of depth and cross-sectional shape of tunnel under surface explosion, Tunnelling and Underground Space Technology Vol 47, pp. 114-122. https://doi.org/10.1016/j.tust.2015.01.003
  18. Mussa, M.H. and A.A. Mutalib, R. Hamid, S.R. Naidu, N.A.M. Radzi and M. Abedini, 2017, Assessment of damage to an underground box tunnel by a surface explosion, Tunnelling and Underground Space Technology, Vol. 66, pp. 64-76. https://doi.org/10.1016/j.tust.2017.04.001
  19. Prasanna, R. and A. Boominathan, 2020, Finite-Element Studies on Factor Influencing the Response of Underground Tunnels Subjected to Internal Explosion, Int. J. Geomech., Vol. 20, No. 7, pp. 01020089-1-04020089-13.
  20. Skemption, A.W. and D.H. MacDonald, 1956, The Allowable Settlements of Buildings, Proceedings of the Institution of Civil Engineers, Vol. 5, Issue 6, pp. 727-768. https://doi.org/10.1680/ipeds.1956.12202
  21. Sower, G.F., 1962, Shallow Foundations, Chapter 6 in Foundation Enginering, ed. by G.A. Leonards, McGraw-Hill, Inc., New York.
  22. Yang Y., X. Xie and R. Wang, 2010, Numerical simulation of dynamic response of operating metro tunnel induced by ground explosion, J. Rock Mechnics and Geotechnical Engineering, Vol. 2, No. 4, pp. 373-384.