• Title/Summary/Keyword: 지층 모델링

Search Result 72, Processing Time 0.028 seconds

Ventilation System Strategy for a Prospective Korean Radioactive Waste Repository (한국형 방사성 폐기물 처분장을 위한 환기시스뎀 전략)

  • Kim Jin;Kwon Sang-Ki
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.3 no.2
    • /
    • pp.135-148
    • /
    • 2005
  • In the stage of conceptual design for the construction and operation of the geologic repository for radioactive wastes, it is important to consider a repository ventilation system which serves the repository working environment, hygiene & safety of the public at large, and will allow safe maintenance like moisture content elimination in repository for the duration of the repositories life, construction/operation/closure, also allowing safe waste transportation and emplacement. This paper describes the possible ventilation system design criteria and requirements for the prospective Korean radioactive waste repositories with emphasis on the underground rock cavity disposal method in the both cases of low & medium-level and high-level wastes. It was found that the most important concept is separate ventilation systems for the construction (development) and waste emplacement (storage) activities. In addition, ventilation network system modeling, natural ventilation, ventilation monitoring systems & real time ventilation simulation, and fire simulation & emergency system in the repository are briefly discussed.

  • PDF

Applicability of the Small-Loop EM Method in the Sallow Marine Environment (천해 환경에서 소형루프 전자탐사의 적용성)

  • Song, Sung-Ho;Kim, Rae-Young;Kang, Hye-Jin;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.2
    • /
    • pp.152-157
    • /
    • 2011
  • The small-loop electromagnetic (EM) method is one of the rapid and non-destructive geophysical methods and has been used widely for many geophysical investigations, particularly for shallow engineering and environmental surveys. Especially in the shallow marine environment, the small-loop EM technique is very effective because of rapid and convenient data acquisition, large signal and low noise level. However, the method has been rarely applied in the very conductive marine environment since it's penetration or investigation depth might be considered too low. In this study, we demonstrated that the small-loop EM method can be effectively applied in the extremely conductive marine environment through the analysis of 1D small-loop EM data. Furthermore, we confirmed that the resistivity distribution under the sea bottom can be quantitatively predicted from the 1D inversion results of synthetic and field data.

A Study on the Upper Ground Reinforcement Effect in Underground Cavern (지하공동 상부지층 보강효과에 관한 연구)

  • Kim, Ki Ho;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.275-283
    • /
    • 2015
  • Excavation of underground space in soft ground implicate to the structure, such as subsidence. As a result, it has been acting as a serious risk to the stability of the roads and facilities. Therefore, in order to stabilize the soil stabilization and reinforcement of the structure, we have been using a number of methods and injecting material. In this study, we compared and analyzed the amount of subsidence regarding the ground reinforcement during underground excavation in soft ground by performing model test. And three-dimensional numerical analysis was performed using FLAC 3D. The subsidence was simulated numerically according to the tunnel excavation. The subsidence results of the model tests and numerical analyzes were relatively consistent. Thus comparing the ground subsidence by varying the reinforcement area on the numerical analysis was analyzed. As a results, three-dimensional numerical simulation could be regarded to simulate better on the ground subsidence by various kinds of underground excavation and it can be used as a material of subsidence prevention methods.

Reliability Evaluation Methodology of Boring Investigation DB for the 3D Integrated Underground Space Map (3차원 지하공간통합지도 구축을 위한 시추조사 DB의 신뢰도 검증 방안)

  • Lee, Boyoung;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.9
    • /
    • pp.35-47
    • /
    • 2017
  • Recently, the 3D image of the geotechnical information has been constructed along with the 3D integrated underground space mapping project. Prior to the visualization of the 3D image of the geotechnical information, it is necessary to analyze and verify the accuracy of the geotechnical information. Previous studies evaluated the precision of collected geotechnical information DB to validate the quality of the collected DB and later studies on the 3D precision were performed to provide the basic data for the 3D integrated underground space map. In this study, practical application methodologies are suggested based on the previous studies to improve the accuracy of the applied geotechnical information and further to improve the reliability of the constructed 3D integrated underground space map.

Surface nuclear magnetic resonance signal contribution in conductive terrains (전도성 지질에서의 SNMR 신호 특성)

  • Hunter Don;Kepic Anton
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.73-77
    • /
    • 2005
  • To correctly invert and interpret Surface Nuclear Magnetic Resonance (SNMR) data collected in conductive terrains, an accurate estimate of subsurface conductivity structure is required. Given such an estimate, it would be useful to determine, before conducting an SNMR sounding, whether or not the conductivity structure would prevent groundwater being detected. Using SNMR forward modelling, we describe a method of determining the depth range from which most of the SNMR signal originates, given a model of subsurface conductivity structure. We use the method to estimate SNMR depth penetration in a range of halfspace models and show that for conductive halfspaces ($<10{\Omega}.m$) the depth of penetration Is less than 50 m. It is also shown that for these halfspaces, increasing coincident loop size does not significantly improve depth penetration. The results can be used with halfspace approximations of more complicated ID conductivity structures to give a reasonable estimate of the depth range over which signal is obtainable in conductive terrains.

Study on the Applicability of Standard Design Response Spectrum Analysis Method for Pile-type Mooring Facilities (말뚝식 계류시설의 표준설계응답스펙트럼 해석법 적용성 연구)

  • Oh, Jeong-Keun;Jeong, Yeong-Seok;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.27-36
    • /
    • 2020
  • The purpose of this paper is to study on the applicability of the standard design response spectrum from the response spectrum analysis method, mainly applied to pile mooring facilities. To this end, after performing the ProShake 1-dimensional site response considering various geological conditions, the current standard design response spectrum was compared, and the ground-pile model in time history and two-dimensional site response analysis using Abaqus were performed to analyze the dynamic behavior of the ground-pile and to examine the selection method of the reference surface of the response spectrum on the installed slope, respectively. As a result, it was confirmed that no problems were found in the applicability of the current standard design response spectrum and no improvements are needed as well when considering the characteristics of the ground-pile dynamic behavior and the slope of the pile mooring facility.

A Study on the Development of Model for Estimating the Thickness of Clay Layer of Soft Ground in the Nakdong River Estuary (낙동강 조간대 연약지반의 지역별 점성토층 두께 추정 모델 개발에 관한 연구)

  • Seongin, Ahn;Dong-Woo, Ryu
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.586-597
    • /
    • 2022
  • In this study, a model was developed for the estimating the locational thickness information of the upper clay layer to be used for the consolidation vulnerability evaluation in the Nakdong river estuary. To estimate ground layer thickness information, we developed four spatial estimation models using machine learning algorithms, which are RF (Random Forest), SVR (Support Vector Regression) and GPR (Gaussian Process Regression), and geostatistical technique such as Ordinary Kriging. Among the 4,712 borehole data in the study area collected for model development, 2,948 borehole data with an upper clay layer were used, and Pearson correlation coefficient and mean squared error were used to quantitatively evaluate the performance of the developed models. In addition, for qualitative evaluation, each model was used throughout the study area to estimate the information of the upper clay layer, and the thickness distribution characteristics of it were compared with each other.

Three-Dimensional Numerical Simulation of Impacts of Layered Heterogeneity and Groundwater Pumping Schemes on Seawater Intrusion (해수 침투에 대한 층상 불균질성 및 지하수 양수 방식의 영향 삼차원 수치 모의)

  • Park, Hwa-Seok;Kihm, Jung-Hwi;Yum, Byoung-Woo;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.8-21
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a hydrodynamic dispersion numerical model is performed to analyze quantitatively impacts of layered heterogeneity of geologic media and groundwater pumping schemes on groundwater flow and salt transport in coastal aquifer systems. A two-layer heterogeneous coastal aquifer system composed of a lower sand layer (aquifer) and an upper clay layer (aquitard) and a corresponding single-layer homogeneous coastal aquifer system composed of an equivalent lumped material are simulated to evaluate impacts of layered heterogeneity on seawater intrusion. In addition, a continuous groundwater pumping scheme and two different periodical groundwater pumping schemes, which withdraw the same amount of groundwater during the total simulation time, are applied to the above two coastal aquifer systems to evaluate impacts of groundwater pumping schemes on seawater intrusion. The results of the numerical simulations show that the periodical groundwater pumping schemes have more significant adverse influences on groundwater flow and salt transport not only in the lower sand layer but also in the upper clay layer, and groundwater salinization becomes more intensified spatially and temporally as the pumping intensity is higher under the periodical groundwater pumping schemes. These imply that the continuous groundwater pumping scheme may be more suitable to minimize groundwater salinization due to seawater intrusion. The results of the numerical simulations also show that groundwater salinization in the upper clay layer occurs significantly different from that in the lower sand layer under the periodical groundwater pumping schemes. Such differences in groundwater salinization between the two adjacent layers may result from layered heterogeneity of the layered coastal aquifer system.

Subsurface Geology and Geologic Structure of the Euiseong Basin using Gravity, Magnetic, and Satellite Image Data (중력, 자력 및 위성영상 자료를 이용한 의성소분지의 지질 및 지구조 연구)

  • Yu Sang Hoon;Hwang Jong Sun;Min Kyung Duck;Woo Ik
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.143-153
    • /
    • 2005
  • Euiseong subbasin, included in the Kyungsang Basin, was created by the result of volcanic activity in the late Cretaceous, and contacts with Milyang and Youngyang subbasins by Palgongsan and Andong faults, respectively. In this study, geophysical survey is implemented fur investigating surface and subsurface geologic structure in Euiseong subbasin which composed with the complex of volcanic and plutonic rocks. To understand surface geologic feature, IRS satellite image and DEM(Digital Terrain Map) are used for analyzing lineament and its density. The numbers of lineaments show major trend in $N55^{\circ}\~65^{\circ}W$, and aspects of lineament lengths show major trend in $N55^{\circ}\~65^{\circ}W$ and N-S directions. 13 delineate subsurface density discontinuity; Power spectrum analysis was implemented for gravity anomaly data, resulting $4-5{\cal}km$ depth of basin basement and $0.5-0.6{\cal}km$ depth of shallow discontinuity. From the result of power spectrum analysis, 2.5-D modelings were implemented along two profiles of A-A' and B-B', and they show subsurface geology in detail. Analytic signal method for detecting boundaries of magnetic basements show 0.001-130 nT/m values, and high energy area show good correspondency with the boundaries of Palgongsan granite and caldera areas in Euiseong subbasin.

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.