• Title/Summary/Keyword: 지질노두

Search Result 78, Processing Time 0.025 seconds

Distribution and Stratigraphical Significance of the Haengmae Formation in Pyeongchang and Jeongseon areas, South Korea (평창-정선 일대 "행매층"의 분포와 층서적 의의)

  • Kim, Namsoo;Choi, Sung-Ja;Song, Yungoo;Park, Chaewon;Chwae, Ueechan;Yi, Keewook
    • Economic and Environmental Geology
    • /
    • v.53 no.4
    • /
    • pp.383-395
    • /
    • 2020
  • The stratigraphical position of the Haengmae Formation can provide clues towards solving the hot issue on the Silurian formation, also known as Hoedongri Formation. Since the 2010s, there have been several reports denying the Haengmae Formation as a lithostratigraphic unit. This study aimed to clarify the lithostratigraphic and chronostratigraphic significance of the Haengmae Formation. The distribution and structural geometry of the Haengmae Formation were studied through geologic mapping, and the correlation of relative geologic age and the absolute age was performed through conodont biostratigraphy and zircon U-Pb dating respectively. The representative rock of the Haengmae Formation is massive and yellow-yellowish brown pebble-bearing carbonate rocks with a granular texture similar to sandstone. Its surface is rough with a considerable amount of pores. By studying the mineral composition, contents, and microstructure of the rocks, they have been classified as pebble-bearing clastic rocks composed of dolomite pebbles and matrix. They chiefly comprise of euhedral or subhedral dolomite, and rounded, well-sorted fine-grained quartz, which are continuously distributed in the study area from Biryong-dong to Pyeongan-ri. Bedding attitude and the thickness of the Haengmae Formation are similar to that of the Hoedongri Formation in the north-eastern area (Biryong-dong to Haengmae-dong). The dip-direction attitudes were maintained 340°/15° from Biryong-dong to Haengmae-dong with a thickness of ca. 200 m. However, around the southwest of the studied area, the attitude is suddenly changed and the stratigraphic sequence is in disorder because of fold and thrust. Consequently, the formation is exposed to a wide low-relief area of 1.5 km × 2.5 km. Zircon U-Pb age dating results ranged from 470 to 449 Ma, which indicates that the Haengmae Formation formed during the Upper Ordovician or later. The pebble-bearing carbonate rock consisted of clastic sediments, suggesting that the Middle Ordovician conodonts from the Haengmae Formation must be reworked. Therefore, the above-stated evidence supports that the geologic age of the Haengmae Formation should be Upper Ordovician or later. This study revealed that the Haengmae Formation is neither shear zone, nor an upper part of the Jeongseon Limestone, and is also not the same age as the Jeongseon Limestone. Furthermore, it was confirmed that the Haengmae Formation should be considered a unit of lithostratigraphy in accordance with the stratigraphic guide of the International Commission on Stratigraphy (ICS).

Geological Structure of the Metamorphic Rocks in the Muju-Seolcheon Area, Korea: Consideration on the Boundary of Ogcheon Belt and Ryeongnam Massif (무주-설천 지역 변성암류의 지질구조: 옥천벨트와 영남육괴의 경계부 고찰)

  • Kang, Ji-Hoon
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.25-38
    • /
    • 2019
  • The Muju-Seolcheon area, which is known to be located in the boundary of Ogcheon Belt and Ryeongnam Massif (OB-RM), consists of age unknown or Precambrian metamorphic rocks (MRs) [banded biotite gneiss, metasedimentary rocks (black phyllite, mica schist, crystalline limestone, quartzite), granitic gneiss, hornblendite], Mesozoic sedimentary and igneous rocks. In this paper are researched the structural characteristics of each deformation phase from the geometric and kinematic features and the developing sequence of multi-deformed rock structures of the MRs, and is considered the boundary location of OB-RM with the previous geochemical, radiometric, structure geological data. The geological structure of this area is at least formed through four phases (Dn-1, Dn, Dn+1, Dn+2) of deformation. The Dn-1 is the deformation which took place before the formation of Sn regional foliation and formed Sn-1 foliation folded by Fn fold. The Dn is that which formed the Sn regional foliation. The predominant Sn foliation shows a NE direction which matches the zonal distribution of MRs. A-type or sheath folds, in which the Fn fold axis is parallel to the direction of stretching lineation, are often observed in the crystalline limestone. The Dn+1 deformation, which folded the Sn foliation, took place under compression of NNW~NS direction and formed Fn+1 fold of ENE~EW trend. The Sn foliation is mainly rearranged by Fn+1 folding, and the ${\pi}$-axis of Sn foliation, which is dispersed, shows the nearly same direction as the predominant Fn+1 fold axis. The Dn+2 deformation, which folded the Sn and Sn+1 foliations, took place under compression of E-W direction, and formed open folds of N-S trend. And the four phases of deformation are recognized in all domains of the OB-RM, and the structural characteristics and differences to divide these tectonic provinces can not be observed in this area. According to the previous geochemical and radiometric data, the formation or metamorphic ages of the MRs in and around this area were Middle~Late Paleproterozoic. It suggests that the crystalline limestone was at least deposited before Middle Paleproterozoic. This deposition age is different in the geologic age of Ogcheon Supergroup which was recently reported as Neoproterozoic~Late Paleozoic. Therefore, the division of OB-RM tectonic provinces in this area, which regards the metasedimentary rocks containing crystalline limestone as age unknown Ogcheon Group, is in need of reconsideration.

Granite Dike Swarm and U-Pb Ages in the Ueumdo, Hwaseong City, Korea (경기도 화성시 우음도 일원의 화강암 암맥군과 U-Pb 연령)

  • Chae, Yong-Un;Kang, Hee-Cheol;Kim, Jong-Sun;Park, Jeong-Woong;Ha, Sujin;Lim, Hyoun Soo;Shin, Seungwon;Kim, Hyeong Soo
    • Journal of the Korean earth science society
    • /
    • v.43 no.5
    • /
    • pp.618-638
    • /
    • 2022
  • The Middle Jurassic granite dike swarm intruding into the Paleoproterozoic banded gneiss is pervasively observed in Ueumdo, Hwaseong City, mid-western Gyeonggi Massif. Based on their cross-cutting relationships in a representative outcrop, there are four dikes (UE-A, UE-C, UE-D, UE-E), and depending on the direction, there are three granite dike groups, which are NW- (UE-A dike), NW to WNW- (UE-C dike), and NE-trending (UE-D and UE-E dikes). These granite dikes are massive, medium-to coarse-grained biotite granites, and their relative ages observed in outcrops are in the order of UE-A, UE-D (=UE-E), and UE-C. The geometric analysis of the dikes indicates that the UE-A and UE-C dikes intrude under approximately NE-SW trending horizontal minimum stress fields. The UE-A dike, which showed a relatively low average SiO2 content by major element analysis, is a product of early magma differentiation compared to other dikes; therefore, it is consistent with the relative age of each dike. The 206Pb/238U weighted mean ages for each dike obtained from SHRIMP zircon U-Pb dating were calculated to be 167 Ma (UE-A), 164 Ma (UE-C), 167 Ma (UE-D), and 167 Ma (UE-E), respectively. The samples of the UE-A, UE-D, and UE-E dikes showed very similar ages. The UE-C dike shows the youngest age, which is consistent with the results of the relative age in the outcrops and major element analysis. Therefore, the granite dikes intruded into the Middle Jurassic (approximately 167 and 164 Ma), coinciding with those of the Gyeonggi Massif, where the Middle Jurassic plutons are geographically widely distributed. This result indicates that the wide occurrence of the Middle Jurassic plutons on the Gyeonggi Massif was formed as a result of igneous activity moving in the northwest direction with the shallower subduction angle of the subducting oceanic plate during the Jurassic.

Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part I: The Yeonhwa I Mine

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.12 no.2
    • /
    • pp.51-73
    • /
    • 1979
  • The zinc-lead deposits at the Yeonhwa I mine were investigated in terms of ore-forming geologic setting, structural style of ore control, geometry of individual orebodies, zoning, paragenesis and chemical composition of skarn minerals, as well as metal grades and ratios of selected orebodies. The Yeonhwa I mine is characterized by a large swarm of chimney type massive orebodies with thin skarn envelopes, boldly developed through a thick sequence of Pungchon Limestone, the overlying Hwajeol Formation, and the underlying Myobong Slate of Cambrian age. Nearly 20 orebodies of similar shape, but of varying size are arranged in a V-shaped pattern with northwest and northeast trends, clearly indicating an outstanding ore control by a conjugate system of fractures with these trends. Important orebodies are the Wolam 1, 2, 3, and 5 orebodies in the west, and the Namsan 1, 2, 3. and 5 orebodies in the east, among others. The Wolam 1 orebody, which was observed from the -360 level through the -240, -120, and 0 levels to the surface outcrops (totaling a vertical height of about 500m), shows a vertical variation in skarn mineralogy, ranging from pyroxene-garnet zone on the lower levels. through pyroxene (without garnet) zone on the intermediate levels, and finally to rhodochrosite vein on the upper levels and surface. Microprobe analyses of pyroxene and garnet on a total of 14 mineral grains revealed that pyroxenes are manganoan salitic in most samples, with downward increase of Fe and Mn, whereas garnets are highly andraditic, containing fractions of subordinate grossular with downward decrease of Fe. This indicates a reverse relationship of Fe-contents between pyroxene and garnet with depth. Ore minerals are major sphalerite, subordinate galena, and minor chalcopyrite. Sulfide gangue minerals include major pyrrhotite, and minor pyrite and marcasite of later age. Two types of variational trends in metal grades and ratios with depth are present on the plots of assay data from the Wolam orebodies: one is a steady upward increase in Pb, Zn, and Pb:Zn ratios, with a terminal decline at the top of orebody: the other is an irregular or sinusoidal change. The former is characteristic of chimney-type orebodies, whereas the latter is of vein· shaped orebodies. The Pb grades show large variations among orebodies and from level to level, whereas the Zn grades are relatively constand or less variable.

  • PDF

Formation Process and Its Mechanism of the Sancheong Anorthosite Complex, Korea (산청 회장암복합체의 형성과정과 그 메커니즘)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.48 no.6
    • /
    • pp.431-449
    • /
    • 2015
  • The study area is located in the western part of the Precambrian stock type of Sancheong anorthosite complex, the Jirisan province of the Yeongnam massif, in the southern part of the Korean Peninsula. We perform a detailed field geological investigation on the Sancheong anorthosite complex, and report the characteristics of lithofacies, occurrences, foliations, and research formation process and its mechanism of the Sancheong anorthosite complex. The Sancheong anorthosite complex is classified into massive and foliation types of Sancheong anorthosite (SA), Fe-Ti ore body (FTO), and mafic granulite (MG). Foliations are developed in the Sancheong anorthosite complex except the massif type of SA. The foliation type of SA, FTO, MG foliations are magmatic foliations which were formed in a not fully congealed state of SA from a result of the flow of FTO and MG melts and the kinematic interaction of SA blocks, and were continuously produced in the comagmatic differentiation. The Sancheong anorthosite complex is formed as the following sequence: the massive type of SA (a primary fractional crystallization of parental magmas under high pressure)${\rightarrow}$ the foliation type of SA [a secondary fractional crystallization of the plagioclase-rich crystal mushes (anorthositic magmas) primarily differentiated from parental magmas under low pressure]${\rightarrow}$the FTO (an injection by filter pressing of the residual mafic magmas in the last differentiation stage of anorthositic magmas into the not fully congealed SA)${\rightarrow}$the MG (a solidification of the finally residual mafic magmas). It indicates that the massive and foliation types of SA, the FTO, and the MG were not formed from the intrusion and differentiation of magmas which were different from each other in genesis and age but from the multiple fractionation and polybaric crystallization of the coeval and cogenetic magma.

Genetic Relationship and Structural Characteristics of the Fe-Ti Ore Body and the Sancheong Anorthosite, Korea (산청 회장암과 철-티탄 광체의 구조적 특징과 발생적 관계)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.571-588
    • /
    • 2014
  • It consists of the Precambrian Jirisan metamorphic complex and Sancheong anorthosite complex and the Mesozoic granitoids which intrude them in the Sancheong area, the Jirisan province of Yeongnam massif, Korea. The study area is located in the western part of the stock-type Sancheong anorthosite complex. We performed a detailed fieldwork on the Sancheong anorthosite (SA) and Fe-Ti ore body (FTO) which constitute the Sancheong anorthosite complex, and reinterpreted the origin of FTO foliation and the genetic relationship between them from the foliations, shear zones, occurrences of the SA and FTO. The new structural characteristics between them are as follows: the multilayer structures of FTO, the derived veins of straight, anastomosing uneven types and block structures related to the size reduction of SA, the gradual or irregular boundaries of SA blocks and FTO showing bulbous lobate margins and comb structures, the FTO foliation and linear arrangements of flow occurrence which is not ductile shear deformation, the discontinuous shear zone of SA, the orientation of FTO foliations parallel to the boundaries of SA blocks, the predominance of FTO foliations toward the boundaries of SA blocks and being proportional to the aspect ratio of plagioclase xenocrysts and SA xenoblocks, and the flow folding structures of FTO foliation. Such field evidences indicate that the SA is not fully congealed when the FTO is melt and the fracturing of partly congealed SA causes the derived veins of FTO and the size reduction of SA. Also the gradual or irregular boundaries of SA blocks and FTO result from the mutual reaction between the not fully congealed SA blocks and the FTO melt, and the FTO foliation is a magmatic foliation which was formed by the interaction between the FTO melt and the partly congealed SA blocks. Therefore, these suggest that the SA and FTO are not formed from the intrusion of different magmas in genesis and age but from a coeval and cogenetic magma through multiple fractionation. We predict that the FTO will show an very irregular occurrence injected along irregular fractures, not the regular occurrence like as the intrusive vein and dike. It can be applied to the designing of Fe-Ti mineral resource exploration in this area.

A Geophysical Survey of an Iron Mine Site (철광산 지역에서의 물리탐사 기술 적용 연구)

  • Kim, Kiyeon;Oh, Seokhoon
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.575-587
    • /
    • 2013
  • DC electrical and electromagnetic survey was applied to evaluate the reserve of an iron mine site. We analyzed the borehole cores and the cores sampled from outcrops in order to decide which geophysical method was efficient for the evaluation of iron mine site and to understand the geological setting around the target area. Based on the core tests for specific weight, density, porosity, resistivity and P-wave velocity, showing that the magnetite could be distinguishable by the electrical property, we decided to conduct the electrical survey to investigate the irone mine site. According to previous studies, the DC electrical survey was known to have various arrays with high resolutions effective to the survey of the iron mine site. However it was also known that the skin depth is too shallow to grasp the deep structure of iron mine. To compensate the weakness of the DC electrical method, we applied the MagnetoTelluric (MT) survey. In addition, a Controlled Source MT (CSMT) method was also applied to make up the shortcoming of MT method which is weak for shallow targets. From the DC electrical and MT survey, we found a new low resistivity zone, which is believed to be a magnetite reserve beneath the old abandoned mine. Therefore, this study was confirmed for additional utility value.

Interpretation of Subsurface Fracture Characteristics by Fracture Mapping and Geophysical Loggings (단열조사 및 물리검층을 통한 지표 하 단열특성 해석)

  • Chae, Byung-Gon;Lee, Dae-Ha;Kim, Yu-Sung;Hwang, Se-Ho;Kee, Weon-Seo;Kim, Won-Young;Lee, Seung-Gu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.1
    • /
    • pp.37-56
    • /
    • 2001
  • As a preliminary study to establish fracture network model in crystalline rocks, detail investigation on fracture characteristics were performed. Five fracture sets were determined on the basis of regional survey of geological structures and fractures on outcrops. Among the fracture sets, S1 set has the highest density and longest trace length of fractures which was identified on surface in the study area. S4 and S5 sets are composed of foliations and foliation parallel shear joints of gneisses, which are very important sets at the aspect of weighting of fracture length. For characterization of subsurface fractures, detail core logging was performed to identify fractures and fracture zones from five boreholes. Acoustic televiewer logging and borehole geophysical loggings produced images, orientations and geophysical properties of fractures which intersect with boreholes. According to the result of the investigations, subsurface fractures can be grouped as three preferred orientations(B1, B2 and B3), which correspond to S1, S2 and S4/S5 of surface fracture sets, respectively. Actually, B1 set is expected to be intensely developed at subsurface. However, it has low frequency of intersection with boreholes due to its parallel or sub-parallel direction to boreholes. According to the inference of conductive fractures, B1 and B3 sets have possibilities of water flow and their intersection lines are also thought to consist of important conduits of groundwater flow. In particular, faults which are parallel to foliations control major groundwater flow in the study area.

  • PDF

A Study on Optimization for Location and type of Dam Considering the Characteristic of Large Fault (대규모 단층특성을 고려한 최적 댐위치 및 형식 선정)

  • Kim, Han-Jung;Lyu, Young-Gwon;Kim, Young-Geun;Lim, Hee-Dae
    • Tunnel and Underground Space
    • /
    • v.22 no.4
    • /
    • pp.227-242
    • /
    • 2012
  • Youngju multipurpose dam is planned to minimizing the damage by flood and obtaining the water for industrial use in Nakdong river region. Faults in rock mass have strong influences on the behaviors of dam structure. Thus, it is very important to analyse for the characteristics of fault rocks in dam design. However, due to the limitation of geotechnical investigation in design stages, engineers have to carry out the additional geological survey including directional boring to find the distribution of faults and the engineering properties of faults for stability of dam. Especially, the selection of location of dam and type of dam considering fault zone must be analyzed through various experimental and numerical analysis. In this study, various geological survey and field tests were carried out to analyse the characteristics of the large fault zone through the complex dam is designed in foundation region. Also, the distribution of structural geology, the shape of faults and the mechanical properties of fault rock were studied for the reasonable design of the location and type of dam for long-term stability of the complex dam.

Source rock investigation for the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House using nondestructive petrological analysis (청와대 소재 경주 방형대좌 석조여래좌상의 암석학적 비파괴분석을 통한 산지해석)

  • Lee, Myeong Seong;Yoo, Ji Hyun;Kim, Jiyoung
    • Journal of the Geological Society of Korea
    • /
    • v.54 no.5
    • /
    • pp.567-578
    • /
    • 2018
  • A nondestructive petrological investigation was carried out to identify the original location and form of the Gyeongju Seated Stone Buddha with Square Pedestals in the Blue House (so-called Stone Buddha in the Blue House). The Statue is a representative stone Buddha statue of Silla (9th century) but its original location is controversial and some parts were missing. Based on the petrological observation, magnetic susceptibility and gamma spectrometry, its stone material was identified as medium-grained alkali feldspar granite. This kind of granites are widely found in the Namsan, Gyeongju. It is very likely that the Namsan granites are the source of rock of the Stone Buddha. The Yudeoksa (Igeosaji temple site) and Namsan are possible to be the original home of the Buddha Statue since there are petrologically identical alkali feldspar granite outcrop distributed in Namsan and stone heritage made of the same stone type in both places. An investigation on the square middle stone base in the Chuncheon National Museum reveals that it is less likely to be the missing part of the Buddha statue as the stone base is fine- to medium-grained pink feldspar granite and has different magnetic susceptibility from the Buddha statue. This study confirmed the contribution and significance of petrological investigation to identification of stone heritage in Korea.