• Title/Summary/Keyword: 지질공학

Search Result 1,792, Processing Time 0.027 seconds

Analysis of the Physical and Mechanical Properties of Injected High-Density Polyurethane from Laboratory Experiments and Field Tests (실내실험 및 현장실험을 통한 고밀도 폴리 우레탄 공법의 물리·역학적 특성 분석)

  • Choi, Junyoung;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.83-101
    • /
    • 2021
  • The high-density polyurethane method uses the instantaneous expansion pressure of injected material to stabilize soft ground, allowing reinforcement, restoration, and construction to be carried out in suboptimal ground conditions. Under normal and, even poor conditions, the method is easily applied because the working time is very short. The method is environmentally friendly and results have excellent durability. The purpose of this study was to verify the physical and mechanical properties of high-density polyurethane in the ground. Initial testing of strength, direct shear, and soil environment stability was followed by testing for permeability in order to address environmental concerns. The results of the experiments showed that the internal friction angle was about twice as high and the adhesion was about 2.5 to 3.5 times higher than for dense and hard clay, and that the permeability factor was significantly lower compared with the existing grouting method, within the range of 1.0 × 10-5.

A Study on the Development of Water Permeability Gap Block by Reinforced Fiber Content (보강섬유 함유량에 따른 투수성 틈새블록 개발에 관한 연구)

  • Jo, Joonho;Shin, Jung
    • The Journal of Engineering Geology
    • /
    • v.32 no.4
    • /
    • pp.661-670
    • /
    • 2022
  • In recent years, extreme rainfall and rainy seasons caused by climate change have caused river flooding and flooding damage, and it is urgent to solve economic and environmental problems in the city center due to the increase in the number of peak homes. The gap block, called the fitting block, is designed to facilitate rainwater pitching by forming a gap between the block and the block by forming a concave part and a protrusion of the block differently without the use of an existing spacer. In this study, for the production of such a gap block, the existing cement content was reduced and aramid fibers and exploration fibers, which are industrial by-products such as Goroslag fine powder and reinforcing fibers, were applied.

Relative Settlement Analysis of Soft Ground (연약지반의 상대적 침하 거동 분석)

  • Young-Jun Kwack;Heui-Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.2
    • /
    • pp.229-240
    • /
    • 2023
  • Instruments are installed in soft ground improvement projects to manage economic and safe construction. When analyzing data, the amount of settlement data over time can be used to understand the overall ground settlement behavior, but it is difficult to analyze the interrelatedness between measurement points. Therefore, to analyze the relative compressive settlement behavior between measurement points, the settlement amount and velocity were processed and defined as the mean settlement difference index (ASi,j) and the slope difference index (SDIi,j). Plotted in the mean settlement difference index - slope difference index (ASi,j-SDIi,j) coordinate system. As a result of the analysis of the relative compaction subsidence behavior between the measuring points, the relationship between the measuring points in the average subsidence difference index - slope difference index coordinate system moved to area 1 as the compaction was completed. By continuously plotting the movement path of the observation point in the corresponding coordinate system, the relative settlement behavior between the measurement points was analyzed, and it was possible to check whether the settlement behavior of the two measurement points was stable or unstable depending on the direction of the path.

Analysis of the Impact on Prediction Models Based on Data Scaling and Data Splitting Methods - For Retaining Walls with Ground Anchors Installed (데이터 스케일링과 분할 방식에 따른 예측모델의 영향 분석 - 그라운드 앵커가 설치된 흙막이 벽체 대상)

  • Jun Woo Shin;Heui Soo Han
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.639-655
    • /
    • 2023
  • Recently, there has been a growing demand for underground space, leading to the utilization of earth retaining walls for deep excavations. Earth retaining walls are structures that are susceptible to displacement, and their measurement and management are carried out in accordance with the standards established by the Ministry of Land, Infrastructure, and Transport. However, managing displacement through measurement can be considered similar to post-processing. Therefore, in this study, we not only predicted the horizontal displacement of a retaining wall with ground anchors installed using machine learning, but also analyzed the impact of the prediction model based on data scaling and data splitting methods while learning measurement data using machine learning. Custom splitting was the most suitable method for learning and outputting measurement data. Data scaling demonstrated excellent performance, with an error within 1 and an R-squared value of 0.77 when the anchor tensile force and water pressure were standardized. Additionally, it predicted a negative displacement compared to a model that without scaling.

Analysis of Soil Characteristics and its Relationship According to the Geological Condition in Natural Slopes of the Landslide Area (산사태지역 자연사면의 지질별 토질특성 및 상관관계 분석)

  • Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.205-215
    • /
    • 2007
  • In this study, the soil characteristics are analyzed using the result of various soil tests as an object of the soil layer of natural slopes in landslides areas. Also, the relationship with landslides and interrelation with each soil properties are analyzed. The landslides in three areas with different geological condition are occurred due to heavy rainfall in same time. The geology of Jangheung area, Sangju area and Pohang area is gneiss, granite, and the tertiary sedimentary rock, respectively. However soil characteristics have a little differentiation to geological condition, the soils sampled from landslide area have higher proportion of fine particle and porosity, and lower density than those from non landslide area. In case of same geological condition, landslides are occurred in the terrain slope with high permeability. The permeability is mainly influenced by the soil characteristics such as particle size distribution, porosity, particle structure, and the geological origins such as weathering, sedimentary environment. The soil layer with high internal friction angle is more stable than that with low internal friction angle in all geological condition. The permeability is mainly influenced by effective particle size, coefficient of uniformity, coefficient of gradation, porosity, density and so on. Also, those have interrelation with each factor. These interrelations are similar in all study area. Meanwhile, in proportion as the void ratio and the porosity rises the permeability increases.

Proposal of Models to Estimate the Coefficient of Permeability of Soils on the Natural Terrain considering Geological Conditions (지질조건에 따른 자연사면 토층의 투수계수 산정모델 제안)

  • Jun, Duk-Chan;Song, Young-Suk;Han, Shin-In
    • The Journal of Engineering Geology
    • /
    • v.20 no.1
    • /
    • pp.35-45
    • /
    • 2010
  • The soil tests have been performed on the specimens obtained from about 1,150 sites including landslides and non-landslides areas in natural terrains for last 10 years. Based on the results of those tests, the average soil properties are estimated and the simple equations for estimating permeability are proposed according to geologic conditions. The average permeability in Granite and Mudstone sites is higher than other sites and the content of silt and clay in Mudstone and Gneiss sites is higher than other sites. The correlation analysis and the regression analysis were performed to estimate the coefficient of permeability according to geological conditions. As the result of the correlation analysis, the coefficient of permeability is selected as a dependent variable, and the silt and clay contents, the water contents and the dry unit weights are selected as independent variables. As the result of the regression analysis, the silt and clay contents and the void ratio were involved commonly in the linear regression equations according to geological conditions. To verify the proposed the linear regression equations, the measured result of the coefficient of permeability at other sites was compared with the result predicted with the proposed equations. As the result of comparison, there were a little bit different between them for some data. However the difference was relatively small. Therefore, the linear regression equations for estimating the coefficient of permeability according to geological conditions may be applied to Korean soils. However, these equations should be verified and corrected continuously to improve the accuracy.

Occurrence, physical and petrochemical properties of the marbles by geological ages in South Korea (국내 대리석류의 지질시대별 산출 및 물리화학적 특성)

  • 윤현수;박덕원;이병대;홍세선
    • The Journal of Engineering Geology
    • /
    • v.13 no.4
    • /
    • pp.429-444
    • /
    • 2003
  • Domestic marbles are mostly distributed in Gyeonggi and Yeongnam Massifs, southwest and northeast Ogcheon Belts, which belong to Precambrian, age-unknown, Cambrian-Ordovician ages, respectively. The former marbles occur as interbedded rocks in metasediments and xenoliths in granitic gneisses. Age-unknown ones occur as interbedded in the formations of Hyangsanri, Gyeomyeongsan, Hwajeonri and Munjuri, and some in metasedimentary rocks. The latter ones occur as interbedded in Pungchon Limestone, and in Jeongseon Limestone, Hwacheonri Formation and Great Limestone Group, respectively. Among physical properties, porosity shows irregular patterns to density and compressive strength, respectively. Absorption ratio has a linear pattern of positive trend to porosity, and compressive strength mostly shows a positive trend to tensile strength. Compressive strengths of the marbles are as follows : Precambrian $1,106{\;}kg/\textrm{cm}^2$, age-unknown $935{\;}kg/\textrm{cm}^2$. Cambrian $1,162{\;}kg/\textrm{cm}^2$ and Ordovician $1,560{\;}kg/\textrm{cm}^2$, respectively. Tensile strengths have decreasing trends as the above order of geologic age. In diagrams of major elements, $Al_2O_3,{\;}Fe_2O_{3(t)}{\;}and{\;}Na_2O+K_2O$ generally show positive trends with increasing $v_2$. MgO/CaO of Precambrian and age-unknown marbles have much higher values than Cambrian and Ordovician marbles as follows, Precambrian 0.31, age-unknown 0.30, Cambrian 0.03 and Ordovician 0.08. And MgO shows a negative trend with increasing CaO, which nay be caused by dolomitization. By MgO contents they can be classified into calcitic dolomite, dolomitic limestone, limestone and dolomitic limestone, respectively.

Application of Terrestrial LiDAR to Monitor Unstable Blocks in Rock Slope (암반사면 위험블록 모니터링을 위한 지상 LiDAR의 활용)

  • Song, Young-Suk;Lee, Choon-Oh;Oh, Hyun-Joo;Pak, Jun-Hou
    • The Journal of Engineering Geology
    • /
    • v.29 no.3
    • /
    • pp.251-264
    • /
    • 2019
  • The displacement monitoring of unstable block at the rock slope located in the Cheonbuldong valley of Seoraksan National Park was carried out using Terrestrial LiDAR. The rock slopes around Guimyeonam and Oryeon waterfall where rockfall has occurred or is expected to occur are selected as the monitoring section. The displacement monitoring of unstable block at the rock slope in the selected area was performed 5 times for about 7 months using Terrestrial LiDAR. As a result of analyzing the displacement based on the Terrestrial LiDAR scanning, the error of displacement was highly influenced by the interpolation of the obstruction section and the difference of plants growth. To minimize the external influences causing the error, the displacement of unstable block should be detected at the real scanning point. As the result of analyzing the displacement of unstable rock at the rock slope using the Terrestrial LiDAR data, the amount of displacement was very small. Because the amount of displacement was less than the range of error, it was difficult to judge the actual displacement occurred. Meanwhile, it is important to select a section without vegetation to monitor the precise displacement of unstable rock at the rock slope using Terrestrial LiDAR. Also, the PointCloud removal and the mesh model analysis in a vegetation section were the most important work to secure reliability of data.

Long-Term Monitoring and Analysis of Changes in the Soil Layer on Dokdo (장기 모니터링을 통한 독도 자연사면의 토층 변화 분석)

  • Kyeong-Su Kim;Young-Suk Song;Dae-Seong Yun;Eunseok Bang
    • The Journal of Engineering Geology
    • /
    • v.34 no.2
    • /
    • pp.163-171
    • /
    • 2024
  • Changes in the soil layer on Dokdo are important both academically and with regard to sustainable conservation and utilization of the islands. Continuous investigation and observation are necessary, as the soil layer is essential to the growth of plants and, therefore, the islands' ecosystem. Such work was carried out for about 8 years using soil erosion measuring bars, which are durable and facilitate simple monitoring of changes in the soil layer. Each bar comprised a rod measuring 30~50 cm long and 1.5 cm in diameter, and the use of stainless steel afforded resistance to corrosion caused by sea breezes. Six measuring bars were installed in the soil layers of each of two islands, Dongdo and Seodo, and measurements were taken one to three times a year from 2014 to 2021. The field measurements indicate that soil was deposited on Dongdo but eroded on Seodo during the observation period. As the measuring bars on Dongdo were located in the central and lower parts of the island, the observed changes in the soil layer resulted mainly from sedimentation of material eroded by weathering or soil runoff from the upper part of the island. In contrast, the measurement locations on Seodo were located in the upper and central parts of the island, where soil erosion and runoff diminished the soil layer at the observation points.

Numerical Analysis of Railway Roadbed Stability with Respect to Underground Cavities and Rock Condition: A Case Study of Shafts at Majang Mine (전산해석을 통한 지하 공동 및 암반 조건에 따른 철도지반 안정성 평가: 마장광산 갱도를 대상으로)

  • Jang, Kyunghwan;Lee, Dongwon;Min, Kyungnam;Chung, Chanmook;Yu, Jaehyung;Lee, Gyeseung
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.295-306
    • /
    • 2021
  • This study used numerical modeling to investigate the stability of railway roadbed in areas with various underground cavities and rock conditions associated with mining activities. It compared combined loads from both passenger and freight trains with loads from only passenger trains. Stability was assessed with reference to the Korean government standards for railway subsidence allowance and railway warping repair. Sufficient stability regarding the railway subsidence allowance standard was not achieved when cavities were at depths of <5 m. The criteria for requiring railway warping repair were met when cavities were at depths of <15 m, depending on the rock fracture condition. This study provides the first report on systematic analysis land subsidence related to cavity size and rock fracture conditions associated with mining activities. We expect that this study could serve as an important reference for railway construction in mining areas.