• Title/Summary/Keyword: 지진 취약도 분석

Search Result 174, Processing Time 0.027 seconds

Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures (확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석)

  • Jin, He-Shou;Song, Jong-Keol
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.269-272
    • /
    • 2008
  • The seismic fragility curves of a structure represents the probability of exceeding the prescribed structural damage given various levels of ground motion intensityand the seismic fragility curve is essential to evaluation of structural performance and assessment of risk and loss of structures. The purpose of this paper is to develop seismic fragility functions for bridge structures in Koreaby reviewing those of advanced countries. Therefore, at first, we investigated development conditions of the seismic fragility functions. And the next highway bridges in Korea are classified into a number of categories and several typical bridges are selected to estimate seismic fragilities for using this analysis method in Korea. Finally, fragility curves for PSC Box girder bridge are estimated. The results show that the bridge classification and damage state play an important role in estimation of seismic damage and seismic fragility analysis for bridge structures.

  • PDF

Retrofit Measures Based on Seismic Retrofit Priority of Existing Bridges (교량의 내진보강 우선순위를 이용한 합리적인 보강방안 선정기법)

  • Lee, Sang-Woo;Kim, Sang-Hyo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.77-86
    • /
    • 2004
  • The retrofit priority of existing and retrofitted bridges is examined and compared to determine effectively the seismic retrofit method of bridges. For the retrofit prioritization of bridges a quantitative procedure is proposed firstly based on seismic damage probabilities and total failure cost due to the damage of seismic vulnerable components. Using the proposed procedure, the retrofit priority of four typical girder-type bridges is determined. In addition, the ranking indices of bridges retrofitted by steel jackets and cable restrainers are revaluated for comparing with the results of existing bridges. Application of retrofitting method can considerably decreases damage possibilities of retrofitted components but may increases those of adjacent vulnerable components. Therefore, the seismic retrofitting effects based on the global motions of existing and retrofitted bridges should be examined to determine efficiently the retrofitting method. For evaluating the retrofitting effects the ranking indices obtained from the proposed procedure is found to be utilized effectively.

Estimation of Seismic Fragility for Busan and Incheon Harbor Quay Walls (부산 및 인천항만 안벽구조물의 지진취약도 예측)

  • Kim, Young Jin;Kim, Dong Hyawn;Lee, Gee Nam;Park, Woo Sun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.25 no.6
    • /
    • pp.412-421
    • /
    • 2013
  • Nowadays, small and medium-sized earthquakes occur frequently in the west coast of Korea. The earthquake induced damages on the harbor structure such as quay wall possibly make a severe impact on national economy. Therefore, not only a seismic design for the structures but warning system for seismic damage right after the occurrence of earthquake should be developed. In this study, seismic fragility analysis was performed to be given to earthquake damage prediction system for quay wall structures in Busan and Incheon harbor. Four types of structures such as pier-type, caisson type, counterfort type, block-type were analyzed and fragility curves of functional performance level and collapse prevention level based on displacement criteria were found. Regression analyses by using the results of the two ports were done for possible use in other port structures.

Seismic Fragility Analysis of Concrete Bridges Considering the Lap Splices of T-type Column (T형 교각의 겹침이음을 고려한 콘크리트 교량의 지진취약도 분석)

  • An, Hyojoon;Cho, Baiksoon;Park, Ju-Hyun;Lee, Jong-Han
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.287-295
    • /
    • 2023
  • The collapse of bridges due to earthquakes results in many casualties and property damages. Thus, accurate prediction and preparation are required for the behavior of bridges during earthquakes. In particular, columns play an important role in the seismic behavior of bridges. The risk of collapse due to an earthquake increases when there is a problem of the insufficient lap splice in the column. In this study, to analyze the characteristics of the lap splice in the column, a numerical model was defined for the insufficient lap-spliced columns and verified using experimental data. The developed column model was applied to a commonly used RC slab bridge. Nonlinear static analysis for the column was performed to evaluate the change in the performance of the column according to the lap-spliced length. In addition, this study assessed the effect of the lap-spliced length on the seismic fragility analysis.

Evaluation of Response Spectrum Shape Effect on Seismic Fragility of NPP Component (스펙트럼 형상이 원전 기기 지진취약도에 미치는 영향 평가)

  • 최인길;서정문;전영선;이종림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.23-30
    • /
    • 2003
  • The result of recent seismic hazard analysis indicates that the ground motion response spectra for Korean nuclear power plant site have relatively large frequency acceleration contents. In the ordinary seismic fragility analysis of nuclear power plant structures and equipments, the safety margin of design ground response spectrum is directly used as a response spectrum shape factor. The effects of input response spectrum shape on the floor response spectrum were investigated by performing the direct generation of floor response spectrum from the ground response spectrum. The safety margin included in the design ground response spectrum should be considered as a floor response spectrum shape factor for the seismic fragility analysis of the equipments located in a building.

Seismic Fragility of Underground Utility Tunnels (지하 공동구 시설물의 지진취약도 분석)

  • Lee, Deuk-Bok;Lee, Chang-Soo;Shin, Dea-Sub
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.5
    • /
    • pp.413-419
    • /
    • 2016
  • Damage of infrastructures by an earthquake causes the secondary damage through the world at large more than the damage of the structures themselves. Amomg them, underground utility tunnel structures comes under the special life line: communication, gas, electricity and etc. and it has a need to evaluate its fragility to an earthquake exactly. Therefore, the destruction ability according to peak ground acceleration of earthquakes for the underground utility tunnels is evaluated in this paper. As an input ground motion for evaluating seismic fragilities, real earthquakes and artificial seismic waves which could be generated in the Korean peninsula are used. And as a seismic analysis method, response displacement method and time history analyzing method are used. An limit state which determines whether destruction is based on the bending moment and shear deformation. A method used to deduct seismic fragility curve is method of maximum likelihood and the distribution function is assumed to the log normal distribution. It could evaluate the damage of underground utility tunnels to an earthquake and could be applied as basic data for seismic design of underground utility tunnel structures.

Visualization Technology of GIS Associated with Seismic Fragility Analysis of Buried Pipelines in the Domestic Urban Area (국내 도심지 매설가스배관의 지진취약도 분석 연계 GIS 정보 가시화 기술)

  • Lee, Jinhyuk;Cha, Kyunghwa;Song, Sangguen;Kong, Jung Sik
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2015
  • City-based Lifeline is expected to cause significant social and economic loss accompanied the secondary damage such as paralysis of urban functions and a large fire as well as the collapse caused by earthquake. Earthquake Disaster Response System of Korea is being operated with preparation, calculates the probability of failure of the facility through Seismic Fragility Model and evaluates the degree of earthquake disaster. In this paper, the time history analysis of buried gas pipeline in city-based lifeline was performed with consideration for ground characteristics and also seismic fragility model was developed by maximum likelihood estimation method. Analysis model was selected as the high-pressure pipe and the normal-pressure pipe buried in the city of Seoul, Korea's representative, modeling of soil was used for Winkler foundation model. Also, method to apply developed fragility model at GIS is presented.

Development of Empirical Fragility Function for High-speed Railway System Using 2004 Niigata Earthquake Case History (2004 니가타 지진 사례 분석을 통한 고속철도 시스템의 지진 취약도 곡선 개발)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.111-119
    • /
    • 2019
  • The high-speed railway system is mainly composed of tunnel, bridge, and viaduct to meet the straightness needed for keeping the high speed up to 400 km/s. Seismic fragility for the high-speed railway infrastructure can be assessed as two ways: one way is studying each element of infrastructure analytically or numerically, but it requires lots of research efforts due to wide range of railway system. On the other hand, empirical method can be used to access the fragility of an entire system efficiently, which requires case history data. In this study, we collect the 2004 MW 6.6 Niigata earthquake case history data to develop empirical seismic fragility function for a railway system. Five types of intensity measures (IMs) and damage levels are assigned to all segments of target system for which the unit length is 200 m. From statistical analysis, probability of exceedance for a certain damage level (DL) is calculated as a function of IM. For those probability data points, log-normal CDF is fitted using MLE method, which forms fragility function for each damage level of exceedance. Evaluating fragility functions calculated, we observe that T=3.0 spectral acceleration (SAT3.0) is superior to other IMs, which has lower standard deviation of log-normal CDF and low error of the fit. This indicates that long-period ground motion has more impacts on railway infrastructure system such as tunnel and bridge. It is observed that when SAT3.0 = 0.1 g, P(DL>1) = 2%, and SAT3.0 = 0.2 g, P(DL>1) = 23.9%.

Post-earthquake Recovery Simulation Model for Water Supply System (지진재해 대응을 위한 상수관망 시스템의 복구 프로그램 개발)

  • Lee, Young Jin;Yoo, Do Guen;Kang, Doosun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.160-160
    • /
    • 2015
  • 지진은 인간의 통제가 불가능한 자연재해의 하나로 중요한 사회기반시설인 상수관망 시스템에 큰 피해를 유발하여 사회기능의 마비로 이어질 수 있다. 이러한 피해를 경감하기 위해서는 재해발생 이전에 시스템의 사전 보강을 통해 내구성을 강화하고, 재해피해 상황을 사전에 모의하여 필요한 복구전략, 복구자원 등의 대책을 마련하고, 실제 지진이 발생한 상황에서는 최대한 신속하게 피해를 복구하는 노력이 필요하다. 본 연구에서는 재해발생 상황을 고려하여 상수관망시스템의 지진피해를 모의하고 복구전략을 수립함으로써 복구대책을 마련할 수 있는 방안을 모색하고자 한다. 재해가 발생한 이후의 비상상황을 모의한 후, 시스템의 취약도 및 수리분석을 통해 최적의 복구대책 및 전략을 수립하기 위한 컴퓨터 기반의 시뮬레이션 모형을 개발하였다. 먼저, 지진발생 시 발생 가능한 상수관망시스템의 관 파손, 누수, 배수지(정수지) 파손, 펌프시설 파손 및 전력차단으로 인한 펌프운영 중단, 기타 구조물의 파손 등의 취약도 분석을 통해 시스템 파괴 모의를 한 후, 복구 우선순위와 복구에 필요한 소요인력, 장비 등을 결정한다. 시스템의 피해상황을 관망 수리해석 모형인 EPANET 모형에 반영하여 정밀한 수리해석을 실시함으로써 재해 상황에서의 용수공급 상황을 실제와 가깝게 재현하도록 한다. 다음으로, 복구전략에 따른 실제 복구진행상황(파손관의 수리, 전력회복에 따른 펌프재가동 등)을 시간별로 모의하여 절점별 공급 가능량을 계산한다. 효율적인 복구전략을 마련하기 위해 다양한 민감도분석을 실시하여, 가장 효과적인 복구전략을 선정하였다. 본 연구에서 개발한 컴퓨터 기반의 시뮬레이션 모형은 복구 소요시간 예측, 복구 소요자원 산출, 시 공간적 복구 진행상황 등을 정량화한 의사결정 시스템의 역할을 수행 할 수 있다. 또한, 상수관망에 발생할 수 있는 다양한 지진피해를 모의하여, 해당 시스템에 가장 효과적인 복구전략을 마련하는데 도움을 줄 것이다.

  • PDF

A Study on the Development of the Seismic Fragility Functions of the High Speed Railway Tunnels in use (기존 고속철도 터널의 지진취약도 함수 개발에 관한 연구)

  • Kim, Hongkyoon;Shin, Chulsik;Lee, Taehyung;Lee, Jonggun;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.67-75
    • /
    • 2014
  • In this study, the staged seismic performance evaluations were conducted to the 91 high speed railway tunnels in use for checking whether to comply with the recent design criteria or not. In addition, the seismic fragility functions of the tunnels were developed to allow the probabilistic risk assessment. The results of the staged seismic performance evaluations which consist of a preliminary assessment and a detailed assessment, show that the tunnels comply with the recent design criteria. With reference to the results of previous studies, a form of the proposed seismic fragility functions was set as a log-normal distribution by PGA, and the parameters of the functions were determined by using the probability of damage for the design PGA level. The seismic fragility functions were developed for each types (Cut & Cover, NATM) of tunnels. The seismic fragility functions from this study and the existing research results (FEMA, 2004) were compared to evaluate the seismic performance level of the tunnels, as a result the tunnels of this study were relatively superior to the ASSM tunnels on the seismic performance.