• Title/Summary/Keyword: 지진 매개변수

Search Result 102, Processing Time 0.029 seconds

Damage Estimation Based on Spatial Variability of Seismic Parameters Using GIS Kriging (GIS Kriging을 이용하여 공간적으로 분포하는 지진매개변수의 분석과 손상 평가)

  • Jeon Sang-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.7
    • /
    • pp.33-44
    • /
    • 2004
  • This paper is focused on the spatial variability of measured strong motion data during earthquake and its relationship with the performance of water distribution pipelines and residential buildings. Analyses of strong motion and the correlations of peak ground velocity (PGV) and pipeline and building damage were conducted with a very large geographical information system (GIS) database including the relationship of time and earthquake intensity and the measured location, and Kriging spatial statistics. Kriging was used to develop regressions of pipeline repair rate (RR) and residential building damage ratio (DR) associated with $90\%$ confidence peak ground velocity (PGV). Such regressions using Kriging provide an explicit means of characterizing the uncertainty embodied in the strong motion data compared with other spacial statistics such as inverse distance method.

A Statistical Analysis of the Seismicity of the Yangsan Fault System (양산단층계 지진활동의 통계적 분석)

  • 이기화;이전희;경재복
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.99-114
    • /
    • 1998
  • The Yangsan fault system of Kyungsang Basin in the southeastern part of Korean peninsula is one of the most important structures in the peninsula. A number of strong earthquakes occurred in the vicinity of the fault. It was suggested that this fault can be divided into three segments: northern, central and southern ones. Earthquake data around the Yangsan fault were classified into two groups as incomplete and complete ones; the former is the data before the Choseon Dynasty and the latter is those since the dynasty. The maximum likelihood method was applied to compute seismicity parameters such as earthquake occurrence rates, b-values of frequency-magnitude relation and maximum possible magnitudes for each segment and the entire fault. These parameters show considerably different values from segment to segment. The b-value for the entire fault turned out to be 0.85 and maximum possible magnitudes for the northern, central and southern segments are 5.2, 6.8 and 6.0, respectively. The mean return periods for the maximum possible magnitudes for each segments are greater than 1000 years. In addition, according to the analysis of the frequency-magnitude relation, the occurrence pattern of earthquakes around the Yangsan fault show more similarity to the characteristic earthquake model than the Gutenberg-Richter model. The data for each segments are, however, too scarce to obtain any physically meaningful results.

  • PDF

Optimal Design of Linear Quadratic Regulator Restrict Maximum Responses of Building Structures Subject to Stochastic Excitation (확률적 가진입력을 받는 건축구조물의 최대응답 제한을 위한 선형이차안정기의 최적설계)

  • 박지훈;황재승;민경원
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.37-46
    • /
    • 2001
  • In this research, a controller design method based on optimization is proposed that can satisfy constraints on maximum responses of building structures subject to around excitation modeled by partially stochastic process. The class of controllers to be optimized is restricted to LQR. Weighting matrix on controlled outputs is used as design variable. Objective function, constraint functions and their gradients are computed by the parameterization of control gain with Riccati matrix. Full state feedback controllers designed by proposed optimization method satisfy various design objectives and their necessary maximum control forces are computed for the production of actuator. LQG controllers composed of Kalman filter and LQR designed by proposed method perform well with little deterioration. So it is possible to design output feedback controllers satisfying constraints on various maximum responses of structures.

  • PDF

A Feasibility Study of Earthquake Monitoring Using a High-resolution Borehole Strainmeter (고분해능 시추공 변형률계 활용을 통한 지진 연구 가능성)

  • Soh, Inho;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.26 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This work investigates whether stress changes induced by an earthquake can be estimated using the deformation measured by high-resolution borehole strainmeters. We estimate the changes in the orientation and magnitude of the principal compression stresses using borehole strainmeter data recorded before and after the M7.2 El Mayor-Cucapah earthquake on April 4, 2010. Clear differences in the stress orientations and magnitudes are apparent before and after the event. The change in stress orientation appears related to subtle increases of stress in the tectonic maximum principal orientation, which is in agreement with the earthquake focal mechanism solution. The sudden stress drop at the onset of the earthquake was 10−3-10−2 MPa in the principal orientations. The Coulomb stress transfer model, which can estimate stress transfer, predicts a shear stress increase of (0.1-0.6) × 10−2 MPa at the strainmeter site, which is in line with the measured data (0.3-0.8) × 10−2 MPa. Overall, our results suggest that borehole strainmeter data reflect the subtle stress changes associated with earthquake occurrence, and that such data can be utilized for earthquake-related research.

Seismic Behavior and Economic efficiency Analysis of Bridge for PSC I-Shaped Girder of isolated device (지진격리장치를 갖는 PSC I형 거더교량의 지진거동 특성 및 경제성 분석)

  • Shin, Yung-Seok;Park, Jang-Ho;Choi, Kwang-Soo;Hong, Soon-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.145-151
    • /
    • 2008
  • The research so far has primarily analyzed efficiency improvement but in this research, it analyzes the characteristics of earthquake behavior, with changed pier heights, through ordinary and seismic analysis. For this, the kind of bridge bearing has been changed against PSC I-shaped bridge, which is mostly used in practice, and at all times earthquake analysis has been performed with through height of pier. Especially considering sectional power resulting from earthquake analysis, displacement of PSC I-shaped bridge bearing, diameter of pier pillar by earthquake load, and upper spare gap have been analyzed. In case of high-pear, seismic isolated device is decided as proper for cars' driving and for management of bridge since it decreases movement of upper structure, than elastic bearing, reducing size of elastic connect device, and it's been analyzed it is effective for improvement of fine view and economic efficiency reducing section of lower bridge structure. Finally, when design PSC I-shaped bridge bearing, for the proper structure and high-pier side, applying seismic isolated device through precise inner analysis is proper than applying equal elastic bearing.

Regional Assessment of Seismic Site Effects and Induced Vulnerable Area in Gyeonggi-do, South Korea, Using GIS (GIS 기반 경기도 광역영역의 부지지진응답 특성 및 연계 지진 취약지역 분석)

  • Kim, Han-Saem;Sun, Chang-Guk;Cho, Hyung-Ik;Nam, Jee-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.5
    • /
    • pp.19-35
    • /
    • 2018
  • The necessity of predicting the spatial information of the site-specific seismic response, which is essential information for the comprehensive earthquake disaster countermeasures, is increasing for the mid-west urban areas where the earthquake-induced damages can be increased due to frequent occurrence of mid-scale earthquake such as 2016 Gyeongju Earthquake and 2017 Pohang Earthquake. Especially, researches on strategic securing of site survey datasets and understanding the site-specific site response characteristics were conducted for Gyeonggi-do, South Korea. In this study, a GIS-based framework for site-specific assessment of site response and induced vulnerable area in Gyeonggi-do, South Korea was proposed. Geo-Data based on GIS platform was constructed for regional estimation of geotechnical characteristics by collecting borehole and land coverage datasets. And the geo-spatial grid information was developed for deriving spatial distribution of geotechnical layer and site response parameters based on the optimization of the geostatistical interpolation method. Accordingly, base information for Improving earthquake preparedness measures was derived as seismic zonation map with administrative sub-units considering the quantitative site effect of Gyeonggi-do.

Effects of interface stiffness on dynamic behavior of connections between vertical shafts and tunnels under earthquake (지진 시 공동구용 수직구-터널 접속부 거동에 대한 경계면 강성 계수의 영향)

  • Kim, Jung-Tae;Hong, Eun-Soo;Kang, Seok-Jun;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.6
    • /
    • pp.861-874
    • /
    • 2019
  • A great interest in the seismic performance evaluation of small size tunnel structures such as utility tunnel has been taken since recent earthquakes at Pohang and Gyeongju in Korea. In this study, the three-dimensional dynamic analyses of vertical shaft and horizontal tunnel under seismic load were carried out using FLAC3D. Especially, parametric analyses was performed to investigate the effects of interfacial stiffness on interfacial behavior between soil and structure. The parametric analysis showed that the interfacial stiffness scarcely gave an effect on the global dynamic behavior of the structure, while had a significant effect on the local displacement behavior of the connections. The magnitude of the interfacial stiffness was inversely proportional to the displacement, while the magnitude of interface stiffness was proportional to the normal and shear stresses. The results of this study suggest the limitations of the existing empirical equations for interfacial stiffness and emphasize the need to develop new interfacial stiffness models.

Analysis of the Spectrum Intensity Scale for Inelastic Seismic Response Evaluation (비탄성 지진응답평가를 위한 Spectrum Intensity Scale 분석)

  • Park, Kyung-Rock;Jeon, Bub-Gyu;Kim, Nam-Sik;Seo, Ju-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.5
    • /
    • pp.35-44
    • /
    • 2011
  • PGA (Peak Ground Acceleration) is the parameter which indicates the peak value for strong ground motion and is mainly due to the intensity of the seismic wave. Usually, seismic waves can consist of different characteristics and can have different effects on structures. Therefore, it may be undesirable that the effects of a seismic wave are evaluated only based on the PGA. In this study, time history analysis was executed with a single degree of freedom model for inelastic seismic analysis. The numerical model was assumed to be a perfect elasto-plastic model. Input accelerations were made with El Centro NS (1940), other earthquake records and artificial earthquakes. The displacement ductility demand and cumulative dissipated energy, which were calculated from other artificial earthquakes, were compared. As a result, different responses from other seismic waves which have the same PGA were identified. Therefore, an index which could reflect both seismic and structural characteristics is needed. The SI (Spectrum Intensity) scale which could be obtained from integration by parts of the velocity response spectrum could be an index reflecting the inelastic seismic response of structures. It can be possible to identify from correlation analysis among the SI scale, displacement ductility demand and cumulative dissipated energy that the SI scale is sufficient to be an index for the inelastic response of structures under seismic conditions.

Seismic Fragility Analysis based on Material Uncertainties of I-Shape Curved Steel Girder Bridge under Gyeongju Earthquake (강재 재료 불확실성을 고려한 I형 곡선 거더 교량의 경주 지진 기반 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Ho-Young
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.747-754
    • /
    • 2021
  • Purpose: Seismic safety evaluation of a curved bridge must be performed since the curved bridges exhibit the complex behavior rather than the straight bridges, due to geometrical characteristics. In order to conduct the probabilistic seismic assessment of the curved bridge, Seismic fragility evaluation was performed using the uncertainty of the steel material properties of a curved bridge girde, in this study. Method: The finite element (FE) model using ABAQUS platform of the curved bridge girder was constructed, and the statistical parameters of steel materials presented in previous studies were used. 100 steel material models were sampled using the Latin Hypercube Sampling method. As an input ground motion in this study, seismic fragility evaluation was performed by the normalized scale of the Gyeongju earthquake to 0.2g, 0.5g, 0.8g, 1.2g, and 1.5g. Result: As a result of the seismic fragility evaluation of the curved girder, it was found that there was no failure up to 0.03g corresponding to the limit state of allowable stress design, but the failure was started from 0.11g associated with using limit state design. Conclusion: In this study, seismic fragility evaluation was performed considering steel materials uncertainties. Further it must be considered the seismic fragility of the curved bridge using both the uncertainties of input motions and material properties.

Analytical Modeling of Seismic Isolators at Cold Temperature Considering Strain Rate Effects (변형도 속도효과를 고려한 저온에서의 면진장치 해석모델)

  • 김대곤
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.97-105
    • /
    • 2001
  • Rubber bearings may exhibit a significant cold temperature effect and some velocity dependency(strain rate effect). Both of these attributes which affect non-linear behavior must be accounted for when accurately modeling the bearings behavior, therefore, an analytical models is proposed to consider the effects of the cold temperature and strain rate on both rubber and lead. From the results of an experimental investigation where the frozen bearings were tested under lateral cyclic loading with constant axial load, a non-linear system identification with least squares procedure was applied to determine the material properties of rubber and lead. It is demonstrated that the proposed analytical model is able to simulate the reversed cyclic loading behavior of elastometric and lead-rubber bearings.

  • PDF